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Abstract

This publication describes the work performed in fiscal year (FY) 1991 under the

Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55)

506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development. The

objectives of this work fall under two broad categories. The first of these deals with the

development of ion engines for primary propulsion in support of solar system exploration. The

second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology

at 100 kW to multimegawatt input power levels.

The major technology issues for ion propulsion are demonstration of adequate engine life

at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of

kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator

system is biased negative of neutralizer common potential in order to collect facility induced

charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator,

Negative Decelerator) configuration may enable long duration ion engine endurance tests to be

performed at vacuum chamber pressures an order of magnitude higher than previously possible.

The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW

class ion engines to be performed within the resources of existing technology programs. The

results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission

current of 25 A are described, as well as the initial tests of hollow cathodes operating on a

mixture of argon and 3% nitrogen. Work performed on the development of carbon/carbon grids,
a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of

nitrogen are also described.

Critical applied-field MPD thruster technical issues remain to be resolved, including

demonstration of reliable steady-state operation at input powers of hundreds to thousands of

kilowatts, achievement of thruster efficiency and specific impulse levels required for missions

of interest, and demonstration of adequate engine life at these input power, efficiency and specific

impulse levels. To address these issues we have designed, built, and tested a 100 kW class,

radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables

separate measurements of the applied- and self-field thrust components. We have also initiated

the development of cathode thermal and plasma sheath models that will eventually be used to

guide the experimental program. In conjunction with the cathode modeling, a new cathode test

facility is being constructed. This facility will support the study of cathode thermal behavior and

erosion mechanisms, the diagnosis of the near-cathode plasma and the development and

endurance testing of new, high-current cathode designs. To facilitate understanding of electrode

surface phenomenon, we have implemented a telephoto technique to obtain photographs of the

electrodes during engine operation. In order to reduce the background vacuum tank pressure

during steady-state engine operation in order to obtain high fidelity anode thermal data, we have

developed and are evaluating a gas-dynamic diffuser.

A review of experience with alkali metal propellants for MPD thrusters led to the

conclusion that alkali metals, particularly lithium, offer the potential for significant engine
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performanceand lifetime improvements. Thesepropellantsare also condensibleat room
temperature,substantiallyreducingtest facility pumping requirements. The most significant
systems-levelissueis thepotentialfor spacecraftcontamination.Subsequentexperimentaland
theoreticalefforts shouldbedirectedtoward verifying the performanceand lifetime gainsand
characterizingthethrusterflow field to assessits impacton spacecraftsurfaces.Consequently,
we have begunthe designand developmentof a new facility to study engineoperationwith
alkali metal propellants.
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1. Introduction

Challenging space missions of the next decades will require propulsion systems that

perform well beyond the limits of advanced chemical systems. Electric propulsion offers
substantial benefits relative to conventional chemical systems including increased payloads,

reduced initial spacecraft masses, and reduced trip times (but, generally not all at the same time).

In particular, the use of nuclear electric propulsion (NEP) with high power ion engines has been

shown to be mission enabling for the detailed exploration of the outer planets. 1 Solar electric

propulsion with ion engines can also provide substantial benefits over chemical propulsion? The

major technology issues for ion propulsion are demonstration of adequate engine life at the 5-

to 10-kW power level and engine scaling to power levels of hundreds of kilowatts.

Demonstration of a 10,000-hour engine life at the 5- to 10-kW level requires the use of a test

facility with a very high pumping speed to adequately simulate the space environment.

Endurance tests performed in inadequately pumped facilities result in artificially short engine

lifetimes due to charge exchange erosion of the accelerator grid caused by operation at high

vacuum chamber pressures. The requirement for very high pumping speeds has heretofore made

endurance testing of 10-kW class ion engines prohibitively expensive. A new technique which

promises to make these endurance tests affordable within existing technology programs is

described in this publication. The other ion engine technology development activities described

in this publication are divided along the two major technology issues mentioned above namely,

lifetime at 5- to 10-kW, and scaling to higher powers. The cathode endurance testing and

discharge chamber erosion tests deal with the engine lifetime issue. The carbon/carbon grid

development activity, segmented ion engine design, and multi-orifice cathode tests deal primarily

with issues associated with scaling ion engines to higher power levels.

The applied-field MPD thruster, operated at SP-100 class power levels, is a potential

alternative to a multi-engine ion thruster system, and multimegawatt MPD thrusters are being

seriously considered for application to the Space Exploration Initiative (SEI). 3 The major

applied-field MPD thruster technical issues are the achievement of performance levels (efficiency

and specific impulse) that are of interest to planetary and SEI applications, the demonstration of

adequate engine life at these performance levels, and the scaling of steady-state engine input

powers to megawatt levels. To address these issues a 100-kW-class, radiation-cooled, applied-

field, MPD thruster and a unique dual-beam thrust stand that allows us to measure the applied-

field and self-field thrust components separately were designed, built, and tested. We have also

initiated the development of electrode thermal and plasma sheath models that will be used to

guide the thruster development program. To understand electrode surface phenomenon, we have

implemented a telephoto technique to obtain close-up photographs of the MPD thruster electrodes

during engine operation. In order to reduce the background vacuum tank pressure during steady-

state engine operation, we have developed and are evaluating a gas-dynamic diffuser. Finally, we

have begun the design and development of new facilities to study MPD engine cathodes and to

operate and study engines operating with alkali metal propellants.



2. Ion Engine Technology

John R. Brophy and Charles E. Garner

2.1 Ion Engine Endurance Testing _ : ........

Ion engines have been under development for 30 years and have long since achieved

performance levels (thrust, specific impulse, and efficiency) that are attractive for planetary
missions. The power-limited, low-thrust nature of ion propulsion, however, results in the

requirement for very long engine burn times to produce the desired spacecraft velocity change.

Engine burn times of 10,000 to 15,000 hours are required for typical deep space missions of

interest (see, for example, Ref. 2). Demonstrating useful lifetimes of this magnitude, for engines

to be used for primary propulsion, has historically proven to be an intractable problem, and yet
such a demonstration is believed to be essential before this technology will be used on a
planetary spacecraft.

A substantial effort, as represented by numerous life tests of the 30-cm-diameter mercury

ion engine in the 1970s and early 1980s, was expended to demonstrate adequate engine life) "s
Not one of these tests, however, successfully demonstrated a 10,000- to 15,000-hour useful life

at full thrust. By far the most successful test was the 4,200 hour, full power test of the J_Series

engine designated J1, 7 Other significant tests included a 5,000-hour test of the J5 thruster at !/4

power, s and a 10,000-hour test of a 700-series thruster. 4 This 10,000-hour test is considered

significant in that a 30-era-diameter thruster was operated for 10,000 hours. However, the

thruster itself suffered considerable internal erosion damage due to ion sputtering and could only

be operated at a small fraction of its full thrust level by the end of the test. In addition, frequent

intervention on the part of the operators was required in order to keep the thruster operating. The

results of this test prompted the design changes that resulted in the 900-series engine. 3

These and most other ion engine endurance tests were performed using mercury as the

propellant. Very low vacuum chamber pressures (typically less than 3x10 -_ tort) were maintained

during engine testing by cryopumping the mercury exhaust on liquid nitrogen temperature

surfaces. Cryopumping results in very high effective pumping speeds if large surface areas are

used, resulting in low background pressures. The major cost of mercury ion engine life testing
turned out to be the cost of the liquid nitrogen.

The switch from mercury to xenon propellant for ion engines aggravated the already

difficult life-testing problem. Xenon gas cannot be effectively cryopumped at liquid nitrogen

temperatures. Furthermore, the heavy atomic mass of xenon greatly reduces the effective

pumping speed of large oil diffusion pumps relative to air and the 5-kW xenon thruster under

development at the NASA Lewis Research Center CI.,¢RC) 9 operates at a propellant flow rate that

is 60% higher than that of the 2.7 kW J-series mercury engine. The combination of these factors

makes endurance testing of 5-kW class xenon ion engines prohibitively expensive.
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Very low background pressures arc required for ion engine life-testingin order to

minimize chargc exchange ion erosionof thc acceleratorgrid. The acceleratorgridisthedown-

stream electrodeof a conventionaltwo-gridion acceleratorsystem and istypicallybiased scvcraI

hundred voltsnegative of neutralizercommon. Charge exchange ionscreateddownstream of the

engine are acceleratedintothe negativeaccclcratorgridcausing sputtererosion. The production

rateof charge exchange ions isa strongfunctionof the background pressureas indicatedinFig.

2.1.1. In thisfigure,the incrcascin acceleratorgridcurrentresultsfrom the increasein charge

exchange ion production with tank pressure. The datum point labeled "LcRC 890 HR LIFE

TEST" representsthe acceleratorgrid currentat which an 890-hour endurance testof a 5-kW

xenon ion engine was performed.9 The solidlinein thisfigureisa curve fitto data taken at

NASA LcRC I°for a xenon engine operatingat a beam currentof 3.2 A, and indicatesthatthe

acceleratorgridcurrentasymptoticallyapproaches a minimum value of 11.2 mA (0.35% of the

beam current)at zero background pressure.
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Fig. 2.1.1 Accelerator grid current is a strong function of vacuum chamber pressure due

to the formation of charge exchange ions which are attracted by the negative grid potential.

The 5-kW endurance test of Ref. 9 was performed with an accelerator current of 17.5_+1.5

mA, which is approximately 60% higher than the zero pressure current. At this current level,

and an accelerator grid voltage of between -300 and -375 V, holes were eroded completely

through the accelerator grid webbing in less than 890 hours. The solid line in Fig. 2.1.1 indicates

that the accelerator current can be reduced to approximately 12 mA with a background pressure
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of 10_ tort. To achieve this background pressure during full power operation, however, requires

a pumping speed of approximately 700,000 liters/s. The large Tank 5 at NASA LeRC with two

helium cryopanels is projected to have a pumping speed of 250,000 liters/s on xenon. I° Even so,

reducing the accelerator grid current from 17.5 mA to 12 mA by increasing the pumping speed

from 55,000 liter/s 9 to 700,000 liters/s may be expected to increase the time to erode completely
through the accelerator grid from less than 890 hours to only about 1300 hours. This is still far

less than the required engine life of 10,000 to 15,000 hours. It should be noted that the

accelerator grid is still functional even with holes eroded completely through the webbing

between the holes. A consensus definition for the end of life for the accelerator grid has not

been established; however, the time to erode completely through the grid webbing would seem
to be an upper limit.

The datum point labeled "JPL 2-GRID" in Fig. 2.1.1 indicates the accelerator grid current

measured in the JPL 2.4-m-diameter x 4.6-m-long electric propulsion test facility at the minimum

achievable tank pressure during engine operation at a 3.2 A beam current (corresponding to an

input power of approximately 5.5 kW). This accelerator grid current point agrees well with the

curve-fit data from NASA LeRC. The current is a factor of three higher than that from the 890-

hour endurance test of Ref. 9 due to the higher tank pressure and suggests that holes would be

eroded through the grid webbing in less than 300 hours if an endurance test was attempted at this
thrust level in the JPL facility.

2.1.1 Preliminary Three-Grid Tests

To address this problem an investigation into the use of three-grid optics was initiated.

It is well known that the addition of a third grid downstream of the accelerator grid, with this

third grid maintained at neutralizer common potential, will reduce the ion current to the

accelerator grid as indicated in Fig. 2.1.2 from Ref. 11. In this figure, the circular data points

indicate the accelerator grid current as a fraction of the total beam current for a two-grid system

operating with mercury propellant. The square data points represent the accelerator grid current

for a three-grid system under similar operating conditions, and the triangular points represent the

decelerator grid of this three-grid system. Clearly the addition of the third grid reduces the ion

current to the accelerator grid even for operation at the low background pressures under which
these data were taken.

A three-grid accelerator system was assembled to investigate the feasibility of decreasing

the accelerator grid ion current further by biasing the decelerator grid either positive or negative
of neutralizer common potential. This three-grid system was assembled from two sets of 600

series, 30-cm-diameter, two-grid ion optics (in this older electrode series, the screen-grid and

accelerator-grid apertures are the same diameter). The two sets of two-grid optics were

disassembled and the stiffening ring from one of the accelerator grids was cut off using a laser-

machining processes. This electrode served as the accelerator grid for the new three-grid system,

and the other accelerator grid, with the stiffening ring still attached, served as the decelerator

grid. The three-grid accelerator system was assembled by separating the electrodes with mica

washers and pressing the three-grid/two-mica-washer sandwich arrangement with the new

E

L

4



G_D 1MRI_IN,I_
CURRY, .
s OFe(_t
CtJRR_E

.2

.6--

.5 ,w.

,4 m

.l

I
o LO

ACCEI..ERATOR GRID

ACCELERATOR GRID

(_CRm svs_u)
.,- DECELERATOR CRID

-
i ,L I I
|

.2 .4 .6 .8
ItK/lOOFMET-19.-TOTALACCD.D_J_llN6VOLTAGE

Fig. 2.1.2 The use of a three-grid accelerator system with the third grid at neutralizer

common potential reduces the ion current to the accelerator grid.

decelerator grid attached to the accelerator system mounting ring. The power supply schematic,

shown in Fig. 2.1.3, was used to apply the desired voltages to the grid electrodes. The polarity

of the decelerator grid supply could be reversed in order to bias this grid either positive or

negative of neutralizer common potential.

Tests with the decelerator grid biased positive of neutralizer common potential were

performed based on the hypothesis that a positive potential on this grid would direct positive

charge exchange ions away from the accelerator system. It was recognized that a positive

decelerator grid would also function as a secondary anode for the neutralizer cathode, and the

effect of this was unknown. The tests indicated that applying a positive potential to the

decelerator grid did not reduce the ion current to the accelerator grid. In fact, biasing the

decelerator grid more than approximately 15 V above neutralizer common potential actually

increases the ion current to the accelerator grid. The explanation for this is relatively simple, and

in hindsight, rather obvious. The negative voltage on the accelerator grid is used to prevent

electron backstreaming. To prevent electron backstreaming, the electrons must "see" this

negative voltage. Biasing the decelerator grid positive of the beam plasma does not prevent the

electrons from "seeing" the negative accelerator grid potential. If it did, then the negative

accelerator grid voltage would not be required; but tests with this configuration showed that it

5
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Fig. 2.1.3 Three-grid power supply schematic.

definitely is req_. Therefore, if the electrons in the beam plasma "see" the accelerator grid

negative potential, then the charge exchange ions in this plasma will also "see" it and be attracted

to the grid. Thus, the positive potential on the decelerator grid is not effective in shielding the
accelerator grid from the charge exchange ions. It is believed that the increase in ion current to

the accelerator grid for decelerator grid voltages of more than 15 V above neutralizer common

potential results from the acceleration of electrons toward the positive decelerator grid. In this

acceleration process, some electrons acquire sufficient energy to ionize the ambient propellant

gas resulting in the production of additional low energy ions near the accelerator system. The

production of low energy ions just downstream of the accelerator system by electron

bombardment has been proposed as a mechanism to explain the high accelerator grid currents
observed at high vacuum chamber pressures. |2

Tests in which the decelerator grid is biased negative of neutralizer common potential

revealed two beneficial effects: (1) with the decelerator grid biased sufficiently negative, it

appears to collect the vast majority of the charge exchange ions produced downstream of the

accelerator system, substantially reducing the flux of ions to the accelerator grid even at high

vacuum chamber pressures; and (2) with a negative voltage on the decelerator grid, the magnitude

of the negative voltage required on the accelerator grid to prevent electron back-streaming can



be significantlyreduced. Thus, by usinga three-gridacceleratorsystem and by biasingthe

decelerator grid negative of neutralizer common potential, the erosion rate of the accelerator grid

is substantially reduced through two mechanisms: the reduction of ion current to the grid, and

the reduction of the energy of these ions (which is determined by the magnitude of the negative

voltage applied to the accelerator grid).

A 30-cm-diameter, divergent field discharge chamber was used with the three-grid set
assembled from the two sets of 600-series electrodes. Operation of this discharge chamber/ion
optics combination on xenon at a beam current of 3.2 A resulted in an accelerator grid current

of 14 mA at a corrected tank pressure of 3.7 x 10 -5 ton" with the following voltages applied to

the grids: (1) a screen grid voltage of 1110 V, (2) an accelerator grid voltage of-300 V, and (3)
a decelerator grid voltage of-100 V. This datum point is compared to that for the two-grid case

in Fig. 2.1.4. This accelerator grid current is actually less than that measured in the course of
the 890-hour endurance test in Ref. 9 even though the endurance test was performed in a facility
with a much higher pumping speed resulting in a vacuum chamber pressure approximately a

factor of three less than in the JPL facility during these tests. According to the curve fit to the

NASA LeRC data, an accelerator grid current of 14 mA is comparable to that which would be

expected at a tank pressure of approximately 5 x 10_ tort on a conventional two-grid accelerator

system and corresponds to an effective pumping speed, in terms of accelerator grid erosion, of
350,000 liters/s. The actual pumping speed of the JPL vacuum system on xenon at this pressure
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Fig. 2.1.4 The screen, accelerator, negative decelerator (SAND) three-grid accelerator
system configuration results in substantially reduced accelerator grid currents.
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is approximately only 14,000 liters/s. This corresponds to over an order of magnitude increase
in effective pumping speed.

With this screen, accelerator, negative decelerator (SAND) three-grid technique, the charge

exchange ion current that previously struck the accelerator grid is now collected by the negatively
biased decelerator grid. It might then be expected that we have simply traded a severe

accelerator grid erosion problem for an equally severe decelerator grid erosion problem.

However, this is not the case because the magnitude of the decelerator grid voltage is
significandy less than that applied to the aeeelerator grid, and the sputter yield of xenon ions on

molybdenum decreases rapidly with ion energy as indicated in Fig. 2.1.5. The data in this figure

are from Ref. 13 and indicate that the sputter yield at 100 eV is roughly a factor of ten less than

at 300 eV. Furthermore, the yield at 200 eV is approximately half that at 300 eV.
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Fig. 2.1.5 The sputter yield of xenon on molybdenum is a nonlinear function of the ion

energy and decreases rapidly with decreasing energies.

2.1.2 Modeling of SAND Accelerator Systems

Numerical calculations of two- and three-grid accelerator system behavior were performed

in order to understand the effects of a negative decelerator grid on the accelerator system

ol_ration and to select candidate SAND electrode geometries for further experimental evaluation.

The numerical calculations were performed using a computer code, written by K. Ishihara and

8



Y. Arakawa of the University of Tokyo, that assumes an axisymmewic geometry. The program

was modified slightly to enable the voltage on the decelerator grid to be a user input rather than

fixed at zero volts as in the origi'na! c0de: The +m_sults of applying this code to the accelerator

system geometry and potentials used in Ref. 9 for the 890-hour endurance test are shown in Fig.

2.1.6. The top half of this figure indicates the trajectories of selected ions, while the bottom half

indicates equal potential contours through the accelerator system. When the equal potential

contours are positive, the increment between contours is 100 V. For negative contours the

increment is 10 V. Two zero-volt contours are seen to cross the centerline of the grid aperture;

however, the -I0 V contour does not. This suggests that the accelerator system under these

conditions is probably operating close to the electron back-streaming limit (i.e., at as high a net-

to-total voltage ratio as possible). These calculations were made for an normalized perveance

hole (N'P/H) of 2.0 x I0 "a A/V _a, which corresponds roughly to the centedine value for the

operating conditions of the 890-hour test. The equal potential contours downstream of the

accelerator grid suggest that ions formed in this region will be directed toward the webbing of

the accelerator grid.

+++++iii!il
_Jt" 1800.0 R- 0,833 HP/H" 2.0E-09 AIDham 9.7 It/h-0.4_ f-0.9925

Contour -300 ... t500 volt [ SteD 1100 volt ]

Fig. 2.1.6 Computer calculation of ion trajectories and equal potential contours through

the accelerator system geometry used in the 890-hour endurance test of Ref. 9.

Calculations for a conventional three-grid system with the decelerator grid potential

maintained at zero volts (roughly neutralizer common potential) are given in Fig. 2.1.7 for the

same grid geometry (hole sizes, grid thicknesses, and separations) as for Fig. 2.1.6 with the



addition that the decelerator grid aperture diameter is the same as that for the screen grid
apertures (1.91 ram). The decelerator grid thickness is the same as the screen and accelerator

grids (0.381 ram), and the accelerator/decelerator grid separation is the same as the

screen/accelerator gap (0.61 mm). The accelerator grid apertures are 1.14 mm in diameter. The

calculations in Fig. 2.1.7 are for a NP/H of 1.0 x 10 -9 A/V 3a, which correspond roughly to the
average NP/I-I across a 30-cm-diameter accelerator system for operati0h ata beam current of 3.2

A and a beam flamess parameter of 0.5. The equal potential contours in this figure again

indicate operation close to the electron back-streaming limit. Furthermore, the negative contours

suggest that charge exchange ions formed downstream of the accelerator grid will be directed

toward the edge of the accelerator grid hole. The grid erosion patterns suggested by Figs. 2.1.6
and 2.1.7 are in rough" qualitative agreement with observed erosion patterns for two- and three-
grid accelerator systems.

If the geometry of Fig. 2.1.7 is maintained, but the accelerator grid voltage is changed
from-300V to -200 V, the results shown in Fig. 2.1.8 are obtained. In this case, there is

insufficient negative voltage on the accelerator grid to prevent electron back-streaming as
indicated by the fact that there are no negative equal potentials which cross the centerline of the

grid apertures. Electrons from the beam plasma will easily "see" the +100 V equal potential

Fig. 2,1.7 lon traje_ries and equal potential contours for a conventional three-grid
accelerator system with the decelerator grid at zero volts.

'The qualitative agreement can only be rough due to the axial symmetry assumed in the
computer model.
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Fig. 2.1.8 Accelerator system operation with insufficient negative voltage on the accelerator

grid resulting in electron back-streamlng.

contour and be accelerated upstream into the positive high voltage discharge chamber. In Fig.

2.1.9 the same conditions as in Fig. 2.1.8 are maintained with the exception that the decelerator

grid is now biased at a potential of-100 V. In this case we see that the -10 V contour now

crosses the centerline of the grid apertures and electron back-streaming is eliminated. Thus, the

application of tlegative voltage to the decelerator grid enables accelerator system operation with

less negative voltage applied to the accelerator grid or, in other words, enables operation at

higher net-to-total voltage ratios.

2.1.3 More SAND Optics Tests

Based on the positive results of the three-grid tests performed with the accelerator system

assembled from 600 series electrodes, a new three-grid system was assembled, this time using

J-series electrodes. 14 The J-series screen grid has 1.91-ram-diameter holes with an open area

fraction of 0.67 and is 0.38 mm thick. The accelerator grid has 1.14-ram-diameter holes with

a center-to-center hole spacing that is 0.3% larger than that of the screen grid, and is also 0.38

mm thick. As with the 600 series electrodes, the stiffening rings were removed from one of the

J-series grids, when required, by drilling out the rivets which attach the electrode to the

stiffening ring. There are two possible three-grid configurations of interest that can be assembled

from the inventory of J-series electrodes (i.e., two screen grids and two accelerator grids). The

first arranges the electrodes in a "screen-accel.-acceL" configuration (for the screen-accelerator-

decelerator of the three-grid system) in which one of the J-series accelerator grids is used as the

11



Fig. 2.1.9 A negative.decelerator grid enables the magnitude of the negative voltage applied
to the accelerator gr, d to be reduced while still preventing elec_r0n back-streanfing.

decelerator grid. The other combination is "screen-screen-accel." In this case one of the J-series

screen grids is used as the new accelerator grid and one of the J-series accelerator grids is used
as the decelerator grid for the three-grid system.

Computer simulations of these two configurations are given in Fig. 2.1.10. The equal
potential contours for both configurations suggest that most charge exchange ions wili be

collected by the decelerator grid instead of the accelerator grid. Furthermore, despite the use of _

small holes for the decelerator grid the simulation indicates no direct ion impingement on this

grid even at the high perveance level selected. It is believed that this is due in part to operation
at high net-to-total voltage ratios and in part to the negative voltage on the decelerator grid. Both
of these effects serve to limit deceleration of the ions and minimize expansion of the beamlets
at the location of the decelerator grid.

The "screen-screen-accel." three-grid configuration (Fig. 2.1.10a) was assembled and

tested. The initial tests with this configuration indicated an accelerator system perveance which

is substantially poorer than would be expected based on the computer simulation of Fig.
2.1.10b. The real accelerator system differs from the ideal simulation in two important aspects.

The first is that there are slight differences in the dish depths of the two sets of J-series optics
used. Thus, when the screen grid from the second set was used as the accelerator grid for the
three-grid system the difference in dish depth resulted in a grid-to-grid separation that was
substantially larger than the 0.61 mm assumed in the simulation. The second aspect is that the

12
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Fig. 2.1.10a "Screen.accel.-accel." SAND optics configuration.
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Fig. 2.1.10b "Screen-screenEaccel." SAND optics configuration.
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best grid aperture alignment is not possible. Again the use of the second J-series screen grid as
the accelerator grid is the problem. Both J-series screen grids have the same center-to-center hole

spacing. When two of these grids are used as a screen/accelerator grid pair, the grid-to-grid

separation causes the holes to be incorrectly aligned due to the grid curvature. In fact the hole

alignment is such that the individual beamlets are deflected away from the axis of the thruster.

Although the center-to-center hole spacing for the accelerator grid is larger than for the screen

grid in the J-series optics, the outward bending of the individual beamlets in the "screen-screen-

accel." three-grid assembly still results in direct ion impingement on the third grid.

Consequently, in order to use this three-grid configuration it was necessary to enlarge the

decelerator grid apertures by ion machining. Even after this machining process it was not

possible to operate at beam currents above 3.0 A on xenon with a screen voltage of 1500 V due

to the large separation between the screen and accelerator grids in this three-grid assembly. Tests
were, therefore, performed at beam currents of 1.45 and 2.0 A.

For a beam current of 1.45 A and operation on xenon propellant, the variation of

accelerator grid current with tank pressure fo r a conventional two-grid accelerator system (J-series
electrodes) is given in Fig. 2.1.11a. The solid line in this figure is a curve fit to data taken at

NASA LeRC in Tank 5 (using only the diffusion pumps) for operation of a 30-cm-diameter ring
cusp thruster at the same beam current. Similar data for the " "screen-screen-accel, three-grid
accelerator system is given in Fig. 2.1.1 l b for a beam current of 1.45 A. In this case both the

accelerator and decelerator grid currents are plotted as functions of the vacuum chamber pressure.

The voltages of the three grids are given in the legend for this figure where V b is the beam

voltage (screen grid voltage), V^ is the accelerator grid voltage, and V_ is the decelerator grid

voltage. The remarkable aspect of this data is that the accelerator grid current exhibits almost

no variation with tank pressure and has a value of approximately 0.35% of the beam current.

This is roughly the level of accelerator grid currents obtained with two-grid systems operating
on mercury propellant at very low background pressures. It is clear from these data that the

negative decelerator grid is collecting almost all of the charge exchange ion current. It is likely

that the only charge exchange ions which now reach the accelerator grid are only those formed
in the intragrid region.

N

_i

For operation at a beam current of 2.0 A, similar results were obtained as indicated in Fig.

2.1.12. Again the accelerator grid current is essentially independent of the tank pressure.

Finally, the effect of accelerator grid voltage on the accelerator grid current for the "screen-

screen-accel." SAND configuration is given in Fig. 2.1.13 for operation at a 2.0 A xenon beam

current, with a beam voltage of 1400 V and a decelerator grid voltage of-80 V. These data

indicate that as the accelerator grid (i.e., the middle grid) voltage is reduced the distribution of

charge exchange ion current between the accelerator and decelerator grid changes with fewer

charge exchange ions going to the accelerator grid when it is less negative.
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Fig. 2.1.11a Accelerator grid current data for two-grid accelerator systems including data
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Fig. 2.1.12 "Screen-screen-accel." SAND configuration data showing essentially no variation
in accelerator grid current with tank pressure at a beam current of 2.0 A.
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2.1.4 SAND Optics Endurance Test

To test the utility of the SAND optics approach, a 1000-hour test of a 30-cm-diameter,

three-grid accelerator system was planned. For this test an unused three-grid accelerator system

was supplied by NASA LeRC. This accelerator system had been fabricated by the Hughes

Research Laboratory (HRL) under contract to LeRC several years ago, and consists of three 0.38-

mm-thick molybdenum electrodes with molybdenum stiffening rings mounted on radially flexible

supports attached to a titanium mounting ring. The screen and accelerator grid apertures are

identical to the J-series, two-grid electrodes. The decelerator grid apertures are 1.52 mm in

diameter. From the point of view of the SAND optics technique, this accelerator system

configuration is probably not optimum, however, it was clearly superior for a long duration test

than either of the three-grid systems assembled with mica washers separating the grids. The ideal

SAND optics configuration will have to be determined through a combination of computer

modeling and testing, and will most likely have screen, accelerator, and decelerator grids with

different thicknesses, hole diameters, and grid-to-grid separations.

The LeRC/HRL three-grid accelerator system (which we will refer to as the endurance

tests optics) was installed on a 30-cm divergent-field thruster and the decelerator grid connected

to a power supply to provide the desired negative voltage as in the other SAND optics tests.

Preliminary tests of this accelerator system were performed at a xenon beam current of 2.0 A.

Measurements to determine the maximum net-to-total ratio, R, were performed at this beam

current, a beam voltage of 1200 V and either 0 V or -100 V applied to the decelerator grid. The

results of these tests arc given in Fig. 2.1.14. These data indicate that the application of a

negative voltage to the decelerator grid enables operation at higher net-to-total voltage ratios.

The increase in indicated beam current at high R ratios denotes the onset of electron back-

streaming (electrons back-streaming into the discharge chamber "look" like ions leaving and so

the measured beam current increases). The ability to operate at higher R ratios means that the

magnitude of the negative voltage applied to the accelerator grid is smaller, and since this voltage

determines the energy of the ions striking the grid the erosion rate of the accelerator grid is
reduced.

The cost to perform a 1000-hour accelerator system endurance test using xenon is

prohibitively expensive without a xenon recovery system, and since such a recovery system does

not yet exist at JPL it was decided to perform the test using argon. Operation of the 30-cm

divergent-field discharge chamber on argon, however, is well known to require high discharge

voltages (typically 40 to 50 V). 15 To have the highest probability that discharge chamber erosion

will not adversely affect the grid endurance test, it was decided to operate on a mixture of argon

and 3% nitrogen by mass. The 3% nitrogen level was selected for the reasons discussed in

Section 2.2 of this publication. In preparation for the 1000-hour test, the engine with the

endurance test optics was operated for a total of 150 hours at the operating conditions given in

Table 2.1.1. Note that the accelerator grid current is approximately 0.34% of the beam current

and that the decelerator grid is collecting most of the charge exchange current. The grid voltages

were selected for the following reasons. The screen grid voltage was selected to be similar to

that used in the 890-hour test in Ref. 9. The decelerator grid voltage was a compromise between
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Fig. 2.1.14 A negative voltage applied to the decelerator grid enables operation at higher

net-to-total voltage ratios before the onset of electron back-streaming.

decelerator grid erosion (which is reduced with less negative voltage levels) and operation at high

net-to-total voltage ratios (which is possible with larger negative decelerator grid voltages). The

accelerator grid voltage was selected experimentally to be approximately 20% greater than the

electron back-streaming limit. The beam current was selected to have a conservative margin less

than the maximum current capability of the screen grid supply to avoid any problems which

might arise from long term operation near the maximum capability of the commercial power
supply.

At the end of the 150-hour test, the engine was disassembled and inspected. Significant

numbers of material flakes were found in the discharge chamber. Analyses of these flakes

revealed them to be molybdenum. In the current discharge chamber configuration, the only

source of molybdenum is the accelerator system. Apparently, even with 3% nitrogen, long term

operation at a discharge voltage of 45 V still results in significant screen grid erosion. The flakes

of material seem to have spalled-off from the downstream face of the anode pole piece, since

several other similar looking "flakes" of material were still attached at this location.
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Table 2.1.1 Nominal 150-hourEndurance Test Operating Parameters

Item Value

Beam current

Beam voltage

Discharge current

Discharge voltage

Accelerator grid current

Accelerator grid voltage

Decelerator grid current

Decelerator grid voltage

3.55 A

1400 V

14.5 A

46.0 V

12.0 mA

-200 V

25 mA

-80 V

For the grid currents and voltages given in Table 2.1.1 and using sputter yield data from

Ref. 13 for argon on molybdenum, it is possible to estimate the expected mass losses for the

accelerator and decelerator grids. Assuming a sputter yield of 0.08 atoms/ion at 80 eV, the mass

loss for the decelerator grid after 150 hours is calculated to be about 0.4 grams. For the

accelerator grid, assuming a sputter yield of 0.4 atoms/ion at 200 eV results in a calculated mass

loss of about 1 gram. For 1000 hours of operation, the decelerator grid is expected to loose

approximately 3 grams and the accelerator grid 8 grams.

The accelerator system was disassembled and the individual grids weighed to compare

with their pretest weights. These data indicate that the screen grid lost 0.4 grams, the accelerator

grid gained approximately 0.8 grams, and the decelerator grid lost approximately 1 gram. The

reasons for the discrepancies between measured and calculated weight losses are not known, but

neither the effect of back-sputtered material onto the accelerator system electrodes nor the effect

of nitrogen in the vacuum chamber have been taken into account in the calculated grid mass
losses. Witness slides were installed prior to the 150-hour test in order to provide information

on the deposit rate of back-sputtered material, but these slides have not yet been analyzed. In

addition, the neutralizer cathode failed approximately half-way through the test and the second

half of the test was performed with neutralizer common grounded to the vacuum chamber.

Finally, there is considerable uncertainty in the sputter yields of molybdenum at low incident ion

energies. There is little doubt, however, that longer duration tests of the accelerator system are

required to better determine the grid erosion rates.

2.2 Cathode Endurance Testing

Recent long duration testing of hollow cathodes at JPL has included operation of a 6.35-

mm-diameter cathode on xenon for 5000 hours at 25 A TM (see Appendix A), and a 12.7-mm-

diameter cathode on argon for 1000 hours at 100 A t_. Argon is of interest because of potential
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applicationsof argonion enginesto theSpace Exploration Initiative 18-20. However, erosion rates

in the ion engine discharge chamber are expected to be greater with argon propellant (compared

to krypton or xenon) because higher discharge currents are required, and in some cases the argon
sputter-yield may be greater.

Testing performed in 1990 showed conclusively that when small quantifies of nitrogen

are added to the xenon propellant, erosion rates of components in the discharge chamber can be

reduced by a factor of 10 or more 2_. It is expected that similar reductions in erosion rates will

be obtained with nitrogen added to argon, although the magnitude of the reduction is unknown.

Two erosion reduction mechanisms have been identified: removal of a chemisorbed nitrogen

surface layer, and formation of sputter-resistant surface nitrides. In both cases, the nitrogen in
the discharge chamber must be continuously replenished.

From a systems point of view, the simplest method of introducing nitrogen into the

discharge chamber is to pre-mix the nitrogen with the propellant in the propellant tanks. In this

way, separate storage and flow control systems for the nitrogen are not required. Of particular

concern, however, are the unknown effects of nitrogen on the chemical reactions which take place
in the hollow cathode.

To test the long-term effects of nitrogen on the physical chemistry in the insert, a cathode

endurance test program was initiated to study the cathode operation on a mixture of argon and

nitrogen (3% by mass). This ratio of nitrogen to argon provides approximately the same number

density of nitrogen atoms as was used in erosion reduction testing with xenon and nitrogen 21_.

2.2.1 Facility Modifications

The life test was performed in the same vacuum facility and discharge apparatus that was

used for the 5000-hour xenon life test _. Minor modifications to the facility and test apparatus

included conversion of the water cooling system for the diffusion pumps to a closed-loop system,
substitution of a tantalum keeper electrode in place of a molybdenum one, and removal of the

solenoid valve flow controller. The new keeper was designed to provide the maximum amount

of viewing area of the cathode orifice and orifice plate during the test. Tantalum was selected

because it is the material which has in the past shown the greatest reduction in erosion rates

when nitrogen is added to the propellant, and should, therefore, minimize the erosion of this
component.

The flow controller was removed because experience has shown that, over long duration

testing, the flow controller drifts out of calibration by 5% or more due to the zero shift with time.

The flow controller was replaced by a micrometer valve and a precision pressure regulator. The

pressure regulator maintains a fixed pressure at the micrometer valve; once the flow rate has been

adjusted to the desired level by adjusting the micrometer valve, the flow rate should remain

unchanged as long as the gas temperature is unchanged.
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Fig. 2.2.1 Propellant distribution schematic for the hollow cathode endurance test.

A schematic diagram of the propellant system is shown in Fig. 2.2.1. Most, but not all,
of the new propellant lines that were installezl were cleaned in acetoneand rinsed in alcohol. The
parts not cleaned in acetone and alcohol include the tip heater, the flexible line connecting the

gas bottle to the pressure regulator, and the propellant assembly containing the pressure regulator

(the area between hand valves HV-1 to HV-2). It was not possible to clean this welded
assembly.

The propellant system was leak-checked in a manner similar to that described in Ref. 16.
First, the propellant lines were pressurized to approximately 26.5 PSIA, and the pressure
indicated by pressure transducer PX615 was noted (see Fig. 2.2.1). Next, hand valves HV-2,
HV-3, HV-4, and HV-5 were closed. By measuring the decrease in propellant line pressure and

estimating the propellant line volume, a total leak rate out of the propellant system can be

calculated. The data from approximately 50 hours of this testing indicated that the leak rate was

at most 4 x 10_ seem. At this point the flow meter was zeroed (at the working pressure).

Subsequently, the flow meter was calibrated on the argon/nitrogen blend.

2.2.2 Cathode Description and Assembly

The cathodes in these tests are identical to the cathode used in the successful 5000-hour

cathode life test, with the exception of the tip heater length. The cathode insert, a hollow porous

tungsten cylinder impregnated with a low work function oxide (a 4:1:1 mix of barium, calcium,
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and aluminum oxides) was identical to that used in the 5000-hour xenon, test, and is described
in detail in Ref. 16.

A schematic diagram of the hollow cathode design is shown in Fig. 2.2.2. A molybdenum

tube 6.4 mm in diameter, approximately 57 mm long, and with a wall thickness of approximately
0.38 mm, houses the hollow cathode insert. This tube is electron-beam welded to a

molybdenum flange at the downstream end, and to a 2% thoriated tungsten orifice plate at the

upstream end. The orifice plate is approximately 1.5 mm in thickness, with an orifice diameter

of approximately 1.8 ram. A 56-deg half-angle chamfer is machined into the downstream face

of the orifice plate. The tip heater is similar in construction to that described in the 5000-hour

xenon test, except that it is 12.5 mm longer. Grafoi125 was sandwiched between the molybdenum

flange and a stainless-steel flange to make a the gas-tightseal between the cathode and the rest

of the flow system. A swagelok fitting welded to the stainless flange connected the cathode to

the propellant distribution system. A photograph of the unassembled cathode, minus the insert,

is shown in Fig. 2.2.3.

Gtafoil Seal_

Stainless Steel Flange

SI j Porous Tungsten

Gas Inlet

L Pigtail Leads

1

_------t,o--.------_

2% Th-W

Orifice Plate

0.25" L5"

l

Fig. 2.2.2 Schematic design of the endurance test cathode (not to scale).
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The cathode tube, molybdenum flange, stainless-steel flange, flexible propellant line,

keeper electrode, keeper isolator shadow shields, and molybdenum and tantalum anode face plates

were ultrasonically cleaned in acetone and then ethyl alcohol for 15 minutes each. Components

were then blown dry with helium and weighed. During the assembly of the cathode, the insert

was never touched directly; rather, it was placed into the cathode barrel by pushing on the pigtail

leads welded to the upstream end of the insert, and the section of pigtail leads touched by cotton

gloves were later clipped off. The insert was exposed to atmosphere for a total of 2.75 hours;

this represents the amount of time required to weigh the insert, assemble the cathode, and install
the cathode into the vacuum tank. After installation, a flow of the argon/nitrogen gas mixture

was established through the cathode at a rate of 15 sccm. A tantalum keeper electrode was

placed downstream of the cathode, as shown in Fig. 2.2.4.

POLE PIECE

CATHODE

CATHODE TIP
HEATER

DISCHARGE

CHAMBER

:)COUPLE

_KEEPER

ELECTRODE

Fig. 2.2.4 Photograph of an end view of the cathode, keeper electrode, polepiece, and

discharge chamber.

The procedure used in Ref. 16 was followed to condition and start up the cathode, with

two exceptions:

la

.

The 3-hour heating cycle at 500°C was initiated by ramping up to this temperature over

a time period of about 5 hours. It is theorized that ramping up to 50(Y'C slowly may

allow time for hydrides in the insert to bake out. In the 5000-hour xenon test, this

temperature was achieved within approximately 15-30 minutes.

Cathode start-up was initiated by application of 585 volts to the keeper; there was no

power supply available to start the cathode-keeper discharge at low voltage.

24



2.2.3 Cathode No. 1 Operation

Much difficulty was encountered in trying to operate the cathode with the keeper

geometry shown in Fig. 2.2.4. The cathode was easy to start, but was difficult to operate. The

discharge was so noisy that it continuously tripped out the anode power supply. With a total of

5.4 hours of run time on the cathode, it was decided to change the keeper to a more standard

configuration. The vacuum tank was opened, while an ai-gon/nitrogen flow of approximately 18
sccm was established through the cathode. A photograph of the anode face plate is shown in Fig.

2.2.5. It is clear from this photograph that the cathode plume was asymmetrically impinging at

the 10:00 o'clock position. It is likely that the plume was affected by the cathode keeper

electrode, but it is not clear at this time why the keeper should affect the plume in this manner.

ANODE FACE

PLATE

Fig. 2.2.5 Photograph of the molybdenum anode face plate. (Note the discoloration on the

upper left side of the face plate.)

A new keeper was fabricated from tantalum and placed as shown in Fig. 2.2.6. The tank

was closed and pumped down to a base pressure of 5.3 x 10 -7 torr. The cathode started easily

on this new keeper, but the keeper and cathode discharge continued to be noisy and erratic.

There were seemingly no combinations of cathode current or flow rate that resulted in stable

operation for very long.

Finally, a standard J-series keeper electrode, thinned slightly for better viewing of the

cathode orifice plate, was installed. The cathode operated better than with previous keeper

geometries. It is not understood why the keeper should have such an effect on the discharge

chamber operation. By the time the cathode had accumulated 220 hours of operation (at currents
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Fig. 2.2.6 Photograph of new keeper electrode geometry.

between 10-20 A) it had experienced several exposures to atmosphere and shutdowns of the

vacuum system. Due to the exposures to atmosphere, it was decided to continue the test only

up to 500 hours of operation in order to obtain additional operating experience while a

replacement cathode was being fabricated.

The cathode was operated for an additional 463 hours at discharge currents ranging from

9-25 A; the discharge current was set to limit the orifice plate temperature to 1200°C or less.

At run hour 275, the cathode operated at emission currents as high as 21 A with an orifice plate

temperature of 1195°C. However, as more operating hours were put on the cathode, the orifice

plate temperature increased, for a fixed emission current. At approximately run hour 550, the

0rifire p_fat-e temperature began to increase at a significant rate. By the end of tile testing (run

hour 683), the cathode could not be operated in a stable mode, and the orifice plate temperature,

for an emission current of 18.7 A, had increased to 1340°C. Due to this excessive operating

temperature, testing was terminated.

In Fig. 2.2.7 a scanning electron micrograph ( SEM ) of the cathode orifice plate after 683

hours of operation on the argon/nitrogen mix is shown. Substantial deposits of tungsten (darker

grey) and tantalum or tungsten (whitish deposit) can be seen surrounding the orifice. Extreme

magnification of the tungsten and tantalum/tungsten deposits are shown in Figs. 2.2.8-9. The

tantalum deposit was due probably to erosion of the keeper electrode. The tungsten deposits

which have an ordered crystalline structure were due undoubtedly to the high operating

temperature of the cathode.

26

. ." " • T ;



Fig. 2.2.7 Scanning electron micrograph (SEM) photograph of the cathode orifice plate.

Fig. 2.2.8 SEM photograph of deposits surrounding the cathode orifice.
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Fig. 2.2.9a SEM photograph of tungsten deposits surrounding the cathode orifice.

Fig. 2.2.9b
orifice.

SEM photograph of tungsten and tantalum deposits surrounding the cathode
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The reasons for the excessive cathode operating temperatures observed in this test are not
known. However, to remove nitrogen as a factor of concern, it was decided to perform a new

test on another cathode using a pure argon propellant. If cathode testing on pure argon is
successful, endurance testing of cathodes on a mixture of argon and nitrogen will be resumed.

2.2.4 Cathode No. 2 Assembly

A major experimental concern is the integrity of the propellant system; cathode tests must

be conducted with no atmospheric gas leaks into the propellant system. The propellant system

is pressurized above atmospheric pressure from the gas supply bottle to the micrometer valve.
Under normal operation, a large pressure drop is encountered across the micrometer valve
resulting in pressures of a few ton at the downstream end.

The leak rate of atmospheric gases into that portion of the propellant feed system which
is below atmospheric pressure (from the micrometer valve to the cathode propellant line vacuum
flange) was measured in the following manner. A cap was connected to the propellant line inside
the vacuum tank that attaches to the flex line, and the tank was then closed and pumped down
to a pressure of less than 104 torr with the valves open to pump out the propellant lines. Next,

all valves except for HV-3 and the micrometer valve were closed; in this way a leak rate of air
into the propellant system (between hand valve I-IV-2 to the flex line in the vacuum tank) could

be measured by recording the increase in pressure with time as measured by the capacitance

manometer. A plot of the pressure increase over time is shown in Fig. 2.2.10. By estimating
the propellant line volume, a total leak rate can be calculated. The data from approximately
45.25 hours and 1050 hours of this testing indicated that the leak rate was between 6.5 x 10_

sccm and 4.5 x 10 -5 sccm, respectively. These values approach the minimum purity levels of the

argon itself, and it can be therefore assumed that there is no leakage of air into the propellant

lines, or that the leak rate is acceptably low.
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Another cathode was assembled using the assembly procedures discussed previously.

Residue-free rubber gloves, used for flight hardware assembly at JPL, were worn when handling
the cathode. The insert was exposed to air for 1.58 hours; an additional 35 minutes was

required to complete the cathode/facility assembly and to pump down the vacuum tank to high
vacuum. This cathode will be tested in FY 1992.

2.3 Discharge Chamber Erosion Studies

Tests conducted at JPL since 1987 have shown that adding nitrogen to the xenon

propellant reduces the erosion rates of components in the discharge chamber of an ion engine 2_-_

It has long been assumed that the observed reductions in component erosion rates were due to

formation of sputter-resistant surface nitrides; in this theory, the base metal forms a nitride at the

surface whose erosion rate is lower than the base metal. However, in 1979 LeRC suggested that

desorption of chemisorbed surface nitrogen was the dominant mechanism for reduced erosion

rates observed in the screen grid of mercury ion engines. This mechanism involves the

adsorption of a surface layer of nitrogen and desorption of this nitrogen surface layer by ion

bombardment. The surface layer generally consists of a single layer of nitrogen atoms or
molecules that are held to the metal surface by covalent bonds.

Appendix B contains a paper, "Metal and Metal Nitride Erosion Rates in a Divergent

Field Ion Engine," presented at the 22 '_ IEPC, held at Viarregio, Italy, October 17-21, 1991,

which summarizes the results of a continuing investigation of the effects of the addition of small

quantities of nitrogen on ion engine discharge chamber erosion. The erosion rates of various

metals and metal nitrides are presented as a function of the percentage of nitrogen added to the

argon propellant. The two mechanisms, chemisorption and surface nitriding, are discussed in

attempts to account for the reduced erosion rates observed in these and other tests. The tests

conducted showed that tantalum and titanium nitride erosion rates are greater than the base metal,

but that the erosion rates of the base metals, and possibly the metal nitrides, could have been

affected by vacuum facility gases. Analyses indicate that reduced screen grid erosion rates may
be attributable to chemisorption of surface nitrogen; however, it is difficult to attribute reduced

erosion rates observed at the cathode side of the baffle to chemisorption, due to the estimated ion

energies and current densities, and the desorption rates of chemisorbed nitrogen.

2.4 Carbon/Carbon Grid Development

Numerous mission analyses have shown that the use of high-power ion propulsion

significantly benefits planetary exploration and lunar/Mars piloted and cargo missions _-zs. Most

of the missions described in Refs. 26--28 require a large number of ion engines; the number of

engines required in an Ion Propulsion System (IPS) is determined by the power which can be

processed by each engine, and by the useful engine lifetime. To reduce the number of engines

in the IPS requires development of engines that operate at higher power levels and for longer
periods of time.
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Theperformanceof an ion thrusteris duechiefly to thedesignof the ion extractiongrids.
Fundamentally,themaximumbeamcurrentthatthegridscanextractfor afixed specificimpulse
is limited by space-chargeeffects,electronback-streaming,and electrical breakdown(arcing)
betweenthegrids. Theseeffectsthemselvesarerelatedto theholealignmentbetweenthescreen,
accelerator,anddeceleratorgrids,and to the grid-to-grid separationdistances. Simply put, the
better the holes in the grids line up, and the closerthe grids canbe spacedto eachother, the
morecurrent theopticscanextractout of the ion enginedischargechamber.

Theproblems inherent in increasing the thrust density of ion engines are grid erosion and

thermal grid distortion, which changes the grid separation distances. Grid erosion, due to ion

sputtering of the grid surfaces-to-grid, becomes more severe as the thrust density increases

because there are more ions to erode the grids. Thermal distortion is due to non-uniform heating,

and the resulting thermal expansion, of the grid electrodes because of radial and grid-to-grid

temperature gradients.

Currently, state-of-the-art grids are fabricated from molybdenum sheets. To mitigate the

grid distortion problems, the grids are dished by hydroforming; a typical J-series ion engine grid

is dished approximately 0.8 in. over the 12-in. diameter _. With this technology molybdenum

grids have been fabricated up to 50 cm in diamete_ m.

However, there are limits to dished molybdenum grid technology. For example, it is

difficult to dish the grids uniformly across the entire diameter of the grid, which leads to a non-

uniform grid gap. In addition, the dishing process may cause grid-to-grid hole misalignment.

Because of the finite coefficient of thermal expansion for molybdenum, thermal distortion can

still occur. Finally, recent test data indicate that the first lie-limiting mechanism in an ion

engine is sputter erosion of the accelerator grid by charge-exchange ions whose energies depend

upon the voltage applied to the accelerator grid and are typically in the range of 300-1000 eV.

Carbon/carbon may be superior to molybdenum for use as a grid material. The materials

properties of carbon/carbon, shown in Figs. 2.4.1 and Fig. 2.4.2 can be adjusted to provide a

near-zero coefficient of thermal expansion over a temperature range of approximately 500"C.

This means that the grids will not distort thermally as the dished molybdenum grids, and can

therefore be used as flat sheets. Hole alignment between the screen, accelerator, and decelerator

grids may therefore be superior due to the elimination of the need to compensate the hole

alignment for dished grids. In addition, the sputter yield of carbon is almost an order of

magnitude lower than molybdenum _3. These materials properties of carbon/carbon may permit

the fabrication of ion engine grids which can process more power and have longer operating life

times than current state-of-the-art grids fabricated from molybdenum. An experimental program

was initiated to find a vendor to fabricate the grid blanks and machine the holes. Three processes

for grid hole fabrication were identified: electric discharge machining, laser machining, and

computer-numerically controlled machining. Boeing Aerospace Defense and Space was selected
to laser-machine the holes in the carbon/carbon grid blanks based on their demonstrated

capability to machine carbon/carbon grids with an open area fraction of approximately 60%. A

company recommended by Boeing, B.F. Goodrich/Supertemp, was subsequently selected as the
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vendor to fabricate the grid blanks. A contract was initiated with Boeing to laser machine the

holes into a complete screen/accelerator/decelerator 15-era-diameter grid set.

Development of carbon/carbon grid technology will continue in FY 1992. Different fiber

types and hole fabrication techniques will be investigated. The materials properties of the
carbon/carbon sheets, including the coefficient of thermal expansion, surface smoothness, and ion

etch rate, will also be investigated. Finally, techniques to measure grid distortion during ion

engine operating will be assessed.

2.5 Divergent-Field Thruster Performance

The 30-era-diameter, xenon, ring-cusp engine endurance tested in Ref. 9 exhibits excellent

performance as a result of only a relatively brief optimization period. It was of interest to

compare the performance of the 30-cm-diameter divergent-field thruster (formerly of the J-series

design), which was the product of an extensive optimization effort with mercury propellant, to
that of the ring-cusp engine. The measured performance values for the two thrusters are given

in Table 2.5.1 for operation at the conditions of the 890-hour endurance test of Ref. 9.

Surprisingly, the performance values of the two engines are comparable. The other major

concern for the divergent-field thruster is that of baffle erosion. It appears likely, however, that

the addition of 1 or 2% of nitrogen to the xenon propellant would enable a sufficiently low baffle
erosion rate for operation at 5 kW (as opposed to the 10-kW operating point used in Ref.
lO).21a2.u

2.6 Multi-Orifice Hollow Cathode

The operation of orificed hollow cathodes at discharge currents greater than approximately

20 A results in the production of energetic ions (with energies of tens of electron-volts) that can

cause severe sputtering damage of engine components near the cathode. 1_'I_z_ Hollow cathode

currents in excess of 20 A, however, are required for the operation of high power (2. 5-kW ion

engines). In an attempt to minimize the effects of the cathode jet at high emission currents, a
multi-orifice cathode shown schematically in Fig. 2.6.1 was designed and fabricated. This

cathode has three symmetrically located orifices placed on the cylindrical section of the tungsten

orifice plate. The intent of this design is to reduce the magnitude of the Current through each

orifice by a factor of three relative to a conventional, single-orifice cathode operating at the same
total current level.

Only very preliminary tests of the multi-orifice cathode have been performed to date. The

tests were performed in a 30-cm divergent-field thruster (formerly a J-series thruster) with the

baffle and baffle support structure removed. Two axial positions of the downstream end of the

cathode were tested, one corresponding to approximately the nominal cathode position for the J-

series engine, and the other approximately 20 mm downstream of this position. A fiat disk of
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Table 2.5.1 Ion Engine Performance Comparison

Ring-Cusp Divergent

(Ref. 9) Field

_ Discharge Voltage (V) 26.9

Screen Grid Voltage (V) 1517

Accelerator Grid Voltage (V) -331

Total Accelerating Voltage (V) 1860

Neut. Common-to-Ground Voltage (V) -15.4

Discharge (anode) current (A) 22.0

Beam Current (A) 3.19

Neutralizer Keeper Current (A) 2.8

Accelera[or Grid Current (mA) 17.4

Corrected Facility Pressure (Pa) 1.7x10 -3

Main Flow Rate (equivalent A) 3.09

Cathode Flow Rate (equivalent A) 0.29

Neutralizer Flow Rate (equivalent A) 0.32

Ingested Flow Rate (equivalent A) 0.05

Beam Voltage ('V) 1529

Net-to-Total Voltage Ratio 0.82

Discharge Losses (W/A) 158

Total Propellant Efficiency Corrected for 0.85

Ingestion Only

Discharge Chamber Propellant Efficiency 0.93

Corrected for Ingestion Only

Assumed Total Thrust Correction Factor 0.96

Thruster Input Power (W) 5510

Thruster Beam Power (W) 4880

Calculated Thrust (N) 0.20

Thrust-to-Power Ratio (mN/kW) 36.0

Specific Impulse (s) 3840

28.5

1503

-340

1843

-11.7

23.3

3.21

4.4

53.0

4.7x10 -3

2.89

0.28

0.23

0.20

1491

0.81

180

0.89

0.95

0.95

5550

4770

0.19

34.8

4000
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molybdenum was positioned just upstream of the cathode orifices and served as the keeper/starter

electrode. The upstream end of the cathode tube was attached to the propellant feed system

through the use of a 6.35-ram-diameter Swagelok fitting, as shown in Figures 2.6.2a and 2.6.2b.

Engine operation with the cathode positioned 20 mm downstream of the nominal J-series

cathode position resulted in very poor engine operation. It appeared that a very peaked radial

plasma density profile was produced which limited the ion current extraction capability of the

accelerator system to less than 3.2 A. At a beam current of 3.2 A and a discharge current of 21

A, the center portion of the grids were observed to glow a dull red. This region was

approximately 5 cm in diameter. During a high voltage recycle, a blue cathode plume could be

seen extending from the cathode to the red glow on the grids.

For engine operation with the cathode positioned at the nominal J-series cathode position
the situation was significantly different. The engine ran well, reasonable discharge voltages could

be achieved, and the performance was acceptable as indicated in Fig. 2.6.3. This figure has been

reproduced from Ref. 16. A representative operating point for the 30-cm-diameter divergent-field

thruster with the multi-orifice cathode is indicated on the figure. It is seen that in this case the
performance lies between that obtained for operation with and without a baffle with a

conventional cathode as measured by Patterson and Rawlin.

2.7 High-Power Ion Engines

A design approach for the near-term development of 100-kW class ion engines is given
in Appendix C.

35



MOLYBDENUM TUBE

_X_ IMPREGNATED

POROUS TUNGSTEN INSERT

TIP HEFITER

Fig. 2.6.1a Schematic of multi-orifice cathode.
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Fig. 2.6.1b Multi-orifice cathode endcap. Fig. 2.6.1c Multi-orifice cathode end view.
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Fig. 2.6.2b Schematic of upstream multi-orifice cathode position.
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Fig. 2.6.3 Thruster performance with the multi-orifice cathode and the baffle removed falls

between that for operation with and without the baffle using a conventional hollow cathode
(from Ref. 10).

3. Magnetoplasmadynamic (MPD) Thruster Technology

3.1

Thomas Ji Pivirotto, Keith D. Goodfellowl and James E. Polk

Operation of an Applied-Field MPD Thruster

A schematic diagram of the MPD thruster is shown in Fig. 3.1.1. The 2% thoriated

tungsten cathode was 1.91 cm in diameter and was used with both a 60-deg cone tip, as shown,

and with a hemispherical tip. The anode/nozzle had an initial throat diameter of 1.27 cm as

shown. Both G-90 graphite and pure tungsten were used to make anode/nozzles. High-purity

boron nitride was used for the insulators and a molybdenum threaded cap was used to hold

everything together. Propellant leaks were prevented by using Grafoil gaskets. The gaseous

propellant was introduced into the engine through the cathode attachment fitting and flowed into
the plenum chamber through the annular gap between the cathode shaft and the insulators.
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Fig. 3.1.1

, . ANOOE,_IOZZL E

Schematic of MPD thruster.

-ELECTR_AGNET

25cm

The electromagnet, also shown in Fig. 3.1.1, was wound from 0.95-cm-diameter, 0.08-cm
wall-thickness, pure-copper refrigeration tubing. The resulting solenoid had an inside diameter

of 18 cm, an outside diameter of 51 cm and had 17 layers of conductor with 16 turns per layer.

Woven fiberglass tubing was used for electrical insulation and the solenoid was cooled by
passing water through the conductor tubing. The front face and inside cylindrical surfaces of the

solenoid were protected from radiant heat from the archead by water-cooled copper sheet. The

calculated and measured magnetic field flux densities are compared in Fig. 3.1.2.
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Fig. 3.1.2 Plot of calculated and measured magnetic-field strength.
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A unique dual-beam thrust stand is shown schematically in Fig. 3.1.3 and pictorially in
Fig. 3.1.4. Both the elecu'omagnet and archead were suspended from a water-cooled framework

that was an integral part of the vacuum tank header. The electromagnet Was supported by two

1.27-cm-diameter stainless steel tubes that also carried the electromagnet cooling water to and

from the solenoid windings and the water-cooled solenoid shield. These two tubes were in a

plane that was perpendicularto the thrust direction and acted as the flexures in the system. As

the electromagnet developed thrust, through the interaction between its axial and radial magnet
field components and the electric currents flowing in the plasma, these two tubes were bent

slightly and the amount of bending was measured with a Linear Variable Differential Transformer

(LVDT). The LVDT output was calibrated by applying weights horizontally along the

electromagnet centerline with a pulley system. This calibration was accomplished in situ after
the vacuum tank has been evacuated.

The archead and its heavy copper bus bars were suspended from a single 1.27-era-

diameter stainless steel tube, which was also used to carry the propellant gas to the thruster. The

measurement of deflection and appropriate calibrations of the archead system was essentially the

same as that of the electromagnet. The electric power to both the electromagnet and arehead was

transferred to the thrust stand through pools of mercury.

f VACLAJM TN_(

SUPPORT

STRUCTURE

THRUST BEAM

LVDT ,

THRUSTER CURRE_r

I:EEDS It MERCURY

POTS

J

MAGNET CURRENT
FEEDS • MERCURY

POTS

Fig. 3.1.3 Schematic of MPD thruster dual-beam thrust stand.
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A reliable, easy-to-use data acquisition system was needed for the MPD thruster

experiment. The existing system was over 10 years old, and both the software and the hardware

needed upgrading. The upgrade path selected was one in which a desktop computer was to be

used with commercially available interface boards. Two methods were considered: developing

specialized in-house software, or purchasing a commercial package. The commercial package

solution was selected because the development time would significantly be reduced, modifications

would be easier, and assistance was available from the JPL Data Acquisition Group. Several

commercial packages were considered for both IBM PC-type computers and for Macintosh

computers. A Macintosh-based system (LabView) was selected because of its versatility and ease

of use. The MPD experiment is often modified and the system must be easy to modify (both

hardware and software). LabView is an icon-oriented program that is easy to modify and is self

documenting. In addition, many of the basic data acquisition software features (such as data

collection and display and interface protocols) are supplied with the software.

The new system is capable of taking data at two different rates simultaneously. Data with

long time constants (such as temperatures) are sampled at one rate while data with short time

constants (such as current and voltage) are sampled at another rate, allowing the capturing of

relevant data without creating an unnecessarily large data file. The data are displayed

numerically. In addition, select channels can be displayed in "strip-chart" format on the computer

screen. This allows the operator to see both the instantaneous values and the trends. The system

is also capable of monitoring the experiment and terminating it if select parameters are out of

range.

This experimental system was operated for a total run time of 59.6 hours with typical runs

lasting from 2 hours to as long as 7 hours. A preliminary attempt to measure thrust on both the

archead and solenoid, with ammonia vapor as the propellant, is shown in Fig. 3.1.5. The

ammonia mass flow rate was approximately 0.050 g/s and the magnetic field strength, measured

at the cathode tip, was set at 638 and 1110 gauss. Due tO the unavailability of our large vacuum

pumping plant during this test, the vacuum-tank back pressure was measured to be between 120

and 130 mtorr. The reason for the large amount of data scatter is not known at this time and is

being investigated. The stated ammonia mass flow rate was obtained, as an approximation, from

an uncalibrated mass flow meter. Calibrations will be performed in the near future and

performance calculations will then be made.

All cathodes used in these experiments were made of 2% thoriated tungsten and were 1.91

cm in diameter. However, two tip configurations were used: a 60-deg included angle cone with

a rounded tip and a 0.95-cm radius hemisphere. Testing with the conical tip and at power levels

up to 50 kW produced severe cathode tip melting. A photograph of two such cathode tips, after

about 8 hours of testing each, is shown in Fig, 3.1.6. Clear evidence of surface melting is

evident. Figure 3.1.7 shows an illustration of a typical cathode profile before and after testing.

The post-test cathode tip angle is approximately 45 deg. This indicates that the cathode tip was

eroded significantly during operation until it reached a geometry that was compatible with the

operating conditions. The final configuration is surprisingly close to the hemispherical shape.

This result, along with a thermal analysis, provided the basis for selecting a hemispherical

cathode tip.
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Fig. 3.1.5 Plot of MPD thrust data.

One of the cathode tips shown in Fig. 3.1.6 and illustrated in Fig. 3.1.7 has been sectioned

and analyzed with the aid of an SEM. The preliminary results indicate that: (a) the long-term

arc attachment area was within approximately 0.2 cm of the cathode tip, (b) molten tungsten from

the attachment area flowed back along the conical surface, possibly driven by gas-dynamic force

from a recirculation zone at the tip, (c) evidence for current emission on the cylindrical surface

of the cathode was also found, and (d) thoria was found on the tip surface, indicating that the

supply had not been depleted after approximately 8 hours of operation.

A hemispherical cathode tip shape has since been tested at power levels up to 80 kW in
a series of 7 runs for a total time of 26.5 hours. A head-on picture of that cathode is shown in

Fig. 3.1.9. Although the surface has been roughened by the discharge no evidence of melting
can be detected. Also, it was found that the starting and operating characteristics of the thruster

are similar for both types of cathode tips.

The anode/nozzle also was affected by the long-term steady-state operation. The principal

effect was an erosion of the nozzle throat. Initially the throat had a 0.79 cm radius of curvature,

a diameter of 1.27 cm, a 50-deg half-angle entrance cone and a 45-deg half-angle exit cone.

Two such nozzles were made of G-90 graphite and a third of pure tungsten. All three nozzles

suffered essentially the same type and degree of erosion, although the graphite sublimated,

leaving no residual material, while the tungsten nozzle left molten tungsten in the exit cone. One

of the graphite nozzles has been sectioned and is shown in Fig. 3.1.9. Note that a slight throat
remains. This seems to be an asymptotic configuration that each of the three nozzles eroded to

after several hours of operation each. The pure tungsten nozzle also apparently eroded to the

same shape, as is suggested in Fig. 3.1.8.
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Fig. 3.1.6 Photograph of experimental cathode tips after testing.

Final Profile ..__x

Fig. 3.1.7 Ilustration of pre-test and post-test cathode geometries.

Although each nozzle throat opened up to about 3.2 cm from the original 1.27 cm, the

starting and operating characteristics were essentially unchanged. This was unexpected; the high

plenum chamber pressure, resulting from the small throat diameter, was thought necessary to

prevent arc attachment at the cathode root. This turned out not to be a problem with this design,

even after the throat had opened up.

L
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Fig. 3.1.8 Photograph of MPD thruster cathode tip and eroded throat.

Fig. 3.1.9 Photograph of the sectioned graphite nozzle.
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3.2 Diffuser Evaluation

It is a well-known fact that vacuum-tank ambient pressure can have an adverse effect on

several of the thrust-producing mechanisms as well as on the measurement of thrust, in all forms

of electric propulsion devices. For example, in thermal devices such as arcjets, a high

background pressure will interfere with the nozzle expansion processes, will contribute to cooling

through natural and forced convection and may interfere with thrust stand operation because of

possible impingements of fluid currents on sensitive thrust stand elements. These same processes

can disturb applied-field MPD thruster measurements as well. In addition, background gas

entrainment and:acceierafi0n in the engine_pqume and e_ects_=0n =plasma conductivity are

considerations. Because of these potentially adverse effects, testing with adequate background

pressure levels in electric propulsion test i'ac_iitles::is _c_ticaito the ultimate development of

electric propulsion engines.

A literature survey of background pressure effects on self- and applied-field MPD engine

performance can be found in Ref. 33. For self-field MPD thrusters, no indications of adverse

effects were observed when vacuum-tankpressures were below one mtorr. For applied-field

engines it was found that high background pressure could either degrade performance by

interfering with one or more thrust-producing mechanisms or enhance performance by

entrainment and acceleration of residual vacuum chamber gases. These effects depend on type

and flow rate of propellant gas used, background gas type, and pressure. For example, with a

hydrogen flow rate of 3.5 mg/s and nitrogen as the background gas, the vacuum-tank pressure

had to be kept below about 8 mtorr to avoid adverse effects on performance measurements. For

ammonia propellant at various flow rates and with a variety of background gases, a pressure

below 0.3 mtorr was required.

If steady-state vacuum tank pressures of these magnitudes are to be maintained by

continuous pumping only, the facility costs, and for long term life testing (a practical necessity

for all electric propulsion devices) the operating costs, can become prohibitive. For example, the

installation cost of a modern diffusion pump is approximately $12 x 106 per gm/s of hydrogen

and $15 x 106 per gm/s of ammonia vapor. Cryopumping of hydrogen or dissociated ammonia

would be even more expensive for full-scale engine life testing. The only known method of

reducing the required pump capacity would be to take advantage of the directed kinetic energy

in the test engine plume. This can be done by considering the engine as part of an ejector

pumping system and/or directing the high energy plume into a diffuser designed to decelerate the

exhaust gases while maintaining as much of the original stagnation pressure as is possible.

A review of the literature indicated that ejector/diffuser design methods and/or data for

ambient pressures below one torr do not exist. Extrapolations from the existing high-pressure

data were therefore used as a starting point and several preliminary designs have been fabricated

and tested with high power arcjets and moderate power applied-field MPD engines. Examples

of some relevant results of these tests are shown in Figs. 3.2.1 and 3.2.2. Data obtained from

a 30-kW class arcjet engine are shown in Fig. 3.2.1. These data were obtained in the facility

shown in Fig. 3.2.3, using the engine design shown in Fig_ 3.2.4. The vacuum tank pressure was

measured with a Baratron pressure gauge calibrated in the range of 1-1000 mtorr. The initial

test was made without the diffuser but with the engine plume directed at the inlet to the water-
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cooled elbow shown in Fig. 3.2.3. The propellant was ammonia so that with zero arc power the
diffuser passed pure ammonia vapor and with arc power the gas was a mixture of nitrogen and

hydrogen with possibly some residual ammonia vapor if dissociation was incomplete. Therefore,

for arc power greater than zero the tank pressure increases, partly because of a decrease in mean

molecular weight (increase in the volume rate of flow due to dissociation), and partly due to an

increase in gas temperature. Note that since the engine is facing into the open elbow, some

recovery of stagnation conditions must be occurring.

Next, a water-cooled constant diameter diffuser with a 14.9-cm ID and a length of 53.7

cm was installed as shown in Fig. 3.2.3. The mouth of this diffuser was 6.4 cm from the engine

exit plane. With this diffuser, a vacuum tank pressure decrease of 50 mtorr, independent of arc

power, was experienced. Again, the vacuum tank pressure increase with arc power is attributed
to increased dissociation and gas temperature. With this diffuser, a secondary effect may be that
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Fig. 3.2.1 Plot of arcjet diffuser data.

the arcjet plume could expand beyond the diffuser entrance and not be completely captured. To

alleviate this potential problem, a second diffuser that was slightly larger in diameter and length
was fabricated, installed and tested. This new diffuser had an internal diameter of 16.1 cm, a

length of 60 cm and its mouth was coincident with the arcjet exit plane. The results of this test
are also shown in Fig. 3.2.1. For this test, the zero arc power data point is higher than the

corresponding point for the no-diffuser case. This increase in vacuum tank pressure represents

the loss of pumping speed (decrease in system conductance) due to the diffuser impedance.

However, once the arc is turned on, and regardless of the dissociation and elevated gas

temperature, the measured vacuum tank pressure is dramatically reduced from the no-diffuser test
and the amount of reduction increases with arc power (increased exhaust velocity). Hence, for

this final arcjet diffuser design, the ejector/diffuser effect overcomes dissociation, elevated

temperatures and plume ballooning effects and its use results in a very large reduction in vacuum
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Fig. 3.2.4 Schematic of the arcjet engine.

tank back pressure. This means that the investment in pumping plant installation and operating

cost could be reduced by more than a factor of two in any proposed new arcjet test facility.

Because of these encouraging results with arcjets a similar, constant diameter,

ejector/diffuser design was investigated with our applied-magnetic-field MPD engine test facility.

The design chosen is shown schematically in Fig. 3.2.5. Because a greater plume expansion was

expected from the lower back pressures and the use of a magnetic nozzle, a larger diffuser mouth

was used in this facility than in the arcjet facility. The design, shown in Fig. 3.2.5, is a water-

cooled, 46-cm-diameter by 123-cm-long cylindrical section followed by a 41-cm-long cone as

a transition to a 25 cm diameter vacuum line. A 6320 liter/s mechanical pumping plant was used

to pump on the diffuser outlet, and a 1230-1iter/s mechanical pumping plant was used to continue

pumping on the vacuum tank, directly. The mouth of the diffuser was located 3 cm from the

engine exit plane in order to provide visual access to the plume.

The data obtained with this ejector/diffuser is shown in Fig. 3.2.2. Argon, at a constant

mass flow rate of 0.09 g/s, was used as the propellant; the arc power was varied between 5 and

35 kW; and the magnetic-field strength, measured at the cathode tip, was varied between 0 and

1110 gauss. The initial tests were conducted withoui the diffuser installed. The internal vacuum

line was removed from the vacuum tank and both pumping plants were used to pump on the tank

itself. Vacuum tank pressure measurements, obtained with a calibrated Baratron gauge, were

made as a function of arc power and magnetic field strength and are shown as filled data points

in Fig. 3.2.2. These data indicate that the pressure is independent of magnetic field strength and

rises only slightly with arc power. Since these tests were performed in a large tank, the exhaust

gas temperature most likely was equilibrated with the tank walls before it arrived at the two

pump out ports. The slight rise in vacuum tank pressure with arc power could then have been
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Fig. 3.2.5 Schematic of MPD thruster diffuser installation.

caused by a slight rise in temperature at the pump out ports.

Next the ejector/diffuser was installed as shown in Fig. 3.2.5, and essentially the same test

parameters were repeated. These data are shown as open data points in Fig. 3.2.2. Without the

magnetic field and at low power, the vacuum tank pressure was reduced by the diffuser, but as

the arc power was increased the tank pressure also increased as it did for the arcjet tests shown

in Fig. 3.2.1. This result may have been caused by expansion of the plume and elevated gas
temperatures which negated most of the diffuser/ejector effect. With the addition of the diffuser

and vacuum line, the conductance of that part of the pumping system was much decreased, but

the eject0r/diffuser effect was still great enough to overcome these and produce a moderate
reduction in tank pressure.

When the magnetic field was turned on, a dramatic new result appeared. The vacuum

tank pressure was reduced further and continued to drop with increasing arc power and magnetic

field strength. These results seem to indicate that as the exhaust velocity is increased by either

increasing the arc power or applied magnetic field strength, or both, the ejector/diffuser effect

increases, resulting in a reduced vacuum tank pressure. Increasing the appfi_Lfieid strength also

appears to focus the plume into a narrower jet, so a higher fraction may be intercepted by the

diffuser inlet. This effect continued at lower mass flow rates and higher arc power and magnetic

field strength. The greatest indicated effect to date was a vacuum tank pressure of 6 mtorr with

0.07 g/s of argon, 40 kW of arc power and a magnetic field strength of 1360 gauss.

All indications seem to suggest that at still a higher arc power and/or magnetic field

strength, the diffuser will lower the vacuum tank pressure further. At a pressure of one mtorr,

or less, it will become possible to turn on our three diffusion pumps, thus adding 130 x 103

50



liters/s for hydrogento our pumpingcapacity. Hence,with a sufficiently high plumevelocity,
the ejector/diffusereffect can:(1) overcomethe addedimpedanceof the diffuser and vacuum
line, (2) overcometheelevatedgastemperatureat theentranceto the pumpout system,and(3)
effectively reducethe vacuumtank pressureto a regimelow enoughto makeaccurateengine
electrodetemperaturemeasurements.

3.3 Electrode Thermal Modeling

Radiation-cooled MPD thrusters are preferable to liquid-cooled thrusters for space

applications because of the simpler design and higher efficiency _. However, in radiation-cooled

thrusters the maximum operating power can be severely limited by the thruster thermal design.

Recent experiments at JPL have shown severe thruster melting even at moderate powers (less

than 50 kW). A better understanding of the thruster thermal characteristics is therefore essential

for thruster development. In FY 1991, MPD thruster thermal analyses consisted of three phases:

selection of an appropriate thermal model, cathode tip analysis, and overall thruster analyses.

3.3.1 Thermal Model Selection

The MPD thruster thermal environment requires a special type of thermal model. The

large temperature gradients present in the thruster (about 3000 K drop over about 20 cm) severely

complicate the thermal model since the material properties change significantly and nonlinearly

over this temperature range. The model must therefore contain temperature-dependent material

properties (primarily thermal and electrical conductivities). In addition, nonlinear temperature

dependent boundary conditions are also required because of the surrounding plasma. These

effects require the use of a "nonlinear" thermal model which significantly increases the

complexity of the analysis. Two methods were considered for addressing this problem. First,

the development of an in-house thermal model designed specifically to address this problem, and

second, the purchase of a commercial modeling package. While the development of a special

code would better address the problems unique to this situation, the development time required

for such a model can be extensive, and therefore a commercial modeling package appeared to

be the best approach.

Both the hardware and the software had to be selected. More than 10 commercial finite-

element models (FEM) were investigated and 5 were examined in detail. Only two of these

(MSC/NASTRAN and AFEMS) contained suitable nonlinear capabilities. The second

consideration was whether a mainframe or a desktop computer would be used. A cost estimate

of the two systems (i.e., using an existing MSC/NASTRAN and VAX computer combination or

purchasing software and using a PC computer) revealed that mainframe system costs far exceeded

the PC system costs. In addition the execution speed of the PC system was significantly faster.

However, the PC system did have a smaller memory capability, but for this effort, this was not

significant. MSC/NASTRAN also offers a PC-based version of their mainframe model. Since

this model was designed to operate on mainframes, it does not take advantage of PC specific

features and is therefore somewhat limited. The other PC-based package is AFEMS by FEM

Engineering. This package has recently been developed specifically for PC use. Of these two

packages, AFEMS was selected because it is designed specifically for a PC-based operation and

has incorporated recent FEM software algorithm improvements. Preliminary tests of the code
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haverevealedit to be versatile and easy to use, and the results are described in the following
sections.

3.3.2 Cathode Tip Thermal Model

The severe cathode tip melting observed in recent experiments (Figs. 3.1.6 and 3.1.7)

prompted an analysis of the heat transfer in the tip region. 35 Two configurations were considered:

a flattened conical tip and a flattened hemispherical tip. A one-dimensional analytical model was

developed to obtain a f'trst-order approximation. Then a two-dimensional axisymmetric model

was developed using the AFEMS software. The details of these models are described in the

paper "An Experimental and Numerical Investigation of an Applied-Field Magnetoplasmadynamic

Space Propulsion Engine," by Pivirotto and Goodfellow, which is reproduced in Appendix D.

The one-dimensional model provided a good first approximation of the average axial temperature
drop, but overestimated the temperature drop along the outside surface and underestimated the

temperature drop along the centerline as would be expected. The axial temperature drop for the

conical tip was typically about 2.5 times the temperature drop for the hemispherical tip with

equivalent heat loads. Therefore, for equivalent operating conditions, the conical geometry

produces significantly higher tip temperature and is consequently more susceptible to melting.

For this analysis, a fixed value heat load was applied uniformly over the flattened portion of the

tip. In reality there is probably a significant portion of the current (and heat transfer) to the side

of the cathode. Also, in reality the heat load to the surface will depend on the surface

temperature and the properties of the surrounding plasma sheath. This analysis is only

appropriate for predicting trends and gross effects and not for the precise determination of

temperature profiles within the cathode. The development of the required cathode sheath model
is the second portion of this program and is described later.

3.3.3 Preliminary Electrode Thermal Models

Preliminary thermal models for both the cathode and the anode electrodes were completed

to estimate the overall electrode thermal conditions; that is, the thermal boundary conditions that

were appropriate for these geometries and material properties. The cathode results are shown in

Fig. 3.3.1. The model included a constant heat flux of 300 W/cm 2 uniformly distributed over the

fiat portion of the tip, temperature-dependent conduction radially from the base area, temperature

dependent-thermal conductivity and internal heat generation (from O_mic heating). For this case

the cathode base temperature was 550 K and the tip temperature was 3350 K. From the

experiments for operation at 30 kW, the cathode base temperature is estimated to be 900 K and

the tip temperature to be between 3000 and 3500 K. For the conical tip cathodes, the tip

temperature clearly exceeded 3660 K and melted on some occasions, as seen in the photograph

of the two conical cathode tips in Fig. 3.1.6. The large L/D (length/diameter) ratio for the

cathode severely limits the allowable heat load at the tip, because it is effectively thermally

choked. That is, cooling of the cathode base is ineffective, and the cathode tip region must have

effectively a zero net heat flux (cooling balances heat loads). An accurate model of the heat

loads at the tip is therefore very important.

The preliminary thermal model of the anode is shown in Figure 3.3.2. This model

includes a constant radial heat flux of 600 W/cm 2 distributed over throat area, temperature

dependent-conduction radially from the base area, radiation from the other external surfaces,

52



|

II

y

O
0
Lt)

It v

0

0

e,-

&

i

E _

_ ®

0

0

C

o _

53



C_J

54



temperature-dependent thermal conduction, and internal heat generation (from Ohmic heating).

While the cathode can be effectively approximated by a one-dimensional model, the anode can

not. For this case the anode base temperature was about 900 K and the throat temperature was

over 4000 K, clearly indicating that the heat load for this geometry is too large. These conditions

may be similar to those of the experimental thruster which experienced severe melting in the

throat and the throat diameter enlarged from 1.27 cm to about 3.18 cm uniformly. The uniform

melting suggests that the heating was uniformly distributed and not localized.

Most of the same simplifications used for the cathode tip model are used for these models.

To improve these models, a more comprehensive understanding of the boundary conditions, in

particular for the heat loads associated with the current attachment at both electrodes is needed.

Both the heat flux and the attachment area are unknown. The values selected for the preliminary

eases were based on estimates obtained from the experimental data. For both electrodes, a range

of heat load values was investigated to estimate what heat loads were physically feasible for these

geometries since the actual heat loads were unknown. The examples presented here are two that

appeared to be the most applicable. The number of cases computed was limited by time required

for a steady-state solution to be achieved. Typically, more than 10 hours of computer time were

required for each case. Development of a cathode sheath model has been initiated this year and

will be continued next year in order to better determine the electrode thermal boundary
conditions.

3.4 Cathode Sheath Model

A plasma sheath region forms between the main body of plasma and the electrodes in

contact with it and connects the plasma characteristics with those of the electrodes. A model of

this region connects plasma temperatures and number densities with the electrode temperature

and heat flux. Also included axe the current density and the sheath voltage drop. The objective,

given information about the plasma near the electrodes, is to predict current density and heat flux
to the surface.

Many models for the cathode sheath are available, but many are too extensive for our

purposes. For this analysis, the model must be simple, but yet return the essential physical

processes. A simple model is required because it will be combined with the cathode thermal

model and eventually with a plasma flow model. A complex model would require excessive

solution time. Various forms of good simple models were found in the literature 3538. The two

best candidates were the models by Prewett and Allen _s, and by Bade and Yos 3s.

The Prewett and Allen model of the cathode sheath region is a one-dimensional model

with three species (ions and electrons from the plasma and thermionic electrons). The ions and

the thermionic electrons are monoenergetic while the plasma electrons are considered to be

Maxwellian. The solution consists of solving the continuity and energy equations for each

species along with the Poisson equation for electrostatics. The Richardson equation is used to

determine the thermionic electron current which is augmented with the Schottkey effect for

electrical extraction of electrons from the material. The Schottkey effect is included by

calculating the electric field at the cathode surface. The Bade and Yos model is similar to the
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Prewettand Allen Model but doesnot include theplasmaelectrons (which canbeconsidered
negligible for largesheathvoltages(>10volts)).

The Badeand Yos model does,however,include a model for an ionization zoneat the
sheath/plasmaboundarythat is necessaryto matchtheion currentvaluesfor theplasmaandthe
sheath. The ion current in the sheathis significantly larger than for the plasmawhere the
electronscarry most of the current. The ionization zone produces "extra" ions that enter the

sheath in order to satisfy this condition. The energy for the ion production is provided by the
high energy thermionic electrons accelerated across the sheath.

It was decided for our model to combine the ionization zone model from the Bade and

Yos work with the Prewett and Allen sheath model. Both models were modified to include

additional terms that were found to be significant for the description of the MPD thruster cathode

sheath layer. A new model was formulated that included these additional terms in the two base

models. This model is being developed now and will be presented in detail in the FY 1992

publication. Given the plasma electron temperature and pressure, the sheath voltage, and the

cathode temperature for a particular cathode material and propellent, the model calculates the

current density and the heat flux to the cathode surface. Conversely, the current density could

be given and the sheath voltage calculated, but this method is significantly more difficult
numerically.

To obtain a complete model of the cathode, the thermal and sheath models must be

combined. The sheath model supplies the necessary boundary conditions for the thermal model

and the thermal model supplies the sheath model with the surface temperature.

3.5 Cathode Surface Studies

An optical technique, based on an available 8.89 cm in QUESTAR field model telescope,

has been developed and used to take short-exposure, high-resolution photographs of the MPD

electrodes while the thruster was operating. The telescope was necessary because the nearest,

suitable, vacuum tank window was approximately 4 m from the MPD electrodes. With this

system, a "head-on" photograph of the 1.91-cm-diameter cathode was obtained in which the

image diameter was 1.59 cm. These images could then be expanded without loss of resolution

to a diameter of approximately 12 cm for analysis. Photographs obtained with this technique arc

shown in Figs. 3.5.1 and 3.5.2. These pictures, taken with an exposure time of 1 ms, show

axisymmetric patterns of color and intensity. In Fig. 3.5.1 a ring of tiny dark spots is evident.

Based on post test analysis of the cold electrodes, it turns out these dark spots represent the

growth of tungsten crystals out of the surface of the cathode. In long-term arcjet testing, it has

been found that this type of crystal growth can reach lengths of a millimeter and interfere with

arcjet operation. It has been found in the current experiments that these crystals appear under

certain operating conditions and disappear under other conditions. Not enough testing has been

done to delineate what conditions promote crystal growth. However, by using this optical

technique, it is possible to watch for crystal growth under a variety of operating conditions.
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Fig. 3.5.1 Photograph of hot cathode tip showing axisymmetric patterns.

Fig. 3.5.2 Photograph of hot cathode tip showing formation of crystals in a ring pattern.
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3.6 Cathode Test Facility

Because MPD thrusters are relatively low thrust devices, extremely long operating times

are required to achieve the necessary total impulses. Therefore, component endurance is one of

the primary concerns in engine design. The cathode currently appears to be the life-limiting

component, so a major focus of the effort at JPL is on the study of high current cathode

phenomena. The long-term goal is the development of a Cathode capable of operating reliably

at 10,000 A for 5000 hours, which represents aieveI of technoqbgy a_p_priate_for long-duration

missions. Achieving this ambitious goal depends on obtaining a _detaiied understanding of

cathode wear mechanisms, cathode thermal behavior and mass transport in the surrounding gas,

as well as the capability to test candidate cathode designs.

A new, dedicated facility has been designed and is currently being constructed to provide

the experimental support for the cathode development program. The facility will enable the

following tasks:

°

2.

.

4.

5.

Collection of cathode thermal data to validate the cathode thermal model.

Diagnosis of the near-cathode plasma environment to define the boundary
conditions for the thermal model.

Development of improved cathode designs.

Investigation of new cathode materials.

Performance of cathode endurance tests at high current levels.

The facility requirements were defined by these tasks and the need to adequately simulate the
cathode environment in MPD thrusters.

The facility consists of the vacuum tank pictured in Fig. 3.61I, a Roots blower and

mechanical roughing pump, a Cl0sed-loopcooiing system, and arc power supplies. Figure 3.6.2

shows a schematic of the laboratory layout. The vacuum chamber is approximately 0.5 m in

diameter and 2 m long and is composed of three water-cooled stainless steel segments that are

electrically isolated from each other. Each segment has a port on each side and one on the top.

A 1.3-m-long steel extension bolted to the rear of the tank contains a loose coil of finned copper

tubing to act as a beam dump. A 7.6-cm-diameter stainless steel tube was inserted through the

coiled copper tubing to ensure optical access along the tank centerline. The anode will be

mounted to a plate bolted between the first and second segments, effectively making the first

segment the discharge chamber. The cathode will be mounted tO the _hamber door, which is

mounted on a set of rails extending from the tank entrance.

The chamber Will be pumped by a 200-cfm Roots bloWer and aS0-cfm mechanical pump.

The pressures attainable wit_thi_ - system as a function of flow rate for argon and hydrogen are

plotted in Fig. 3.6.3. The pressure found in the cathode region of MPD thrusters ranges from

about 1 torr to several hundred torr. These pressures can be achieved in this facility with

reasonable gas flow rates. A particular pressure higher than the best achievable can be obtained

by throttling the pump line or bleeding in additional gas.
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Fig. 3.6.1 Photograph of vacuum chamber for cathode test facility.

The chamber, beam dump, anode and cathode will be cooled with a closed-loop water

cooling system composed of a plate and frame heat exchanger and a cooling tower. The system

has been sized to dissipate 130 kW. Power for the discharge will initially be supplied by three

Westinghouse arc power supplies. Each is capable of providing about 200 A at 70 V. Later our

existing Miller power supplies will be connected, providing up to 3000 A at 80 V continuously

or 4000 A at 80 V for 20 minutes.

3.7 Investigation of Alkali Metal Propellants

MPD thrusters using gaseous propellants such as hydrogen, argon, or ammonia have

demonstrated only marginal performance and are subject to excessive cathode erosion. Several

approaches to addressing these issues for gaseous propellants are being pursued. Howe_,er,

experience in the United States in the 1960s and early 1970s and in the Soviet Union suggests
that the use of alkali metals as propellants may significantly improve engine performance and

electrode endurance. A critical review of the available literature was conducted to evaluate the

potential advantages and problems associated with alkali metal propellants and was summarized

in the paper "Alkali Metal Propellants for MPD Thrusters," by Polk and Pivirotto, which is

reproduced in Appendix E.
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Fig. 3.6.3 Plot of vacuum system performance.

The primary purpose of this review was to determine if sufficient justification exists to

initiate a renewed experimental examination of alkali metal propellants. A critical review of the

experimental programs conducted at the Giannini Scientific Corporation, Electro-Optical Systems,

Los Alamos National Laboratory, AVCO Corporation, and in the Soviet Union revealed

considerable evidence indicating that efficiencies as high as 60-70% can be achieved at specific

impulses of 5000-7000 s with lithium. The experimental procedures were also reviewed, but no

sources of gross systematic bias that could invalidate this general conclusion were identified.
Anecdotal evidence of improved cathode lifetime was also found.

The properties of the alkali metals were also examined to determine if the observed gains

in performance and lifetime could be justified on sound physical bases. The alkali metals all

have low fhst ionization potentials. In addition, the second ionization potential and the first
excited state of the ion are very high for lithium. There is, therefore, little double ionization and

very little energy required to produce single ions. This results in reduced frozen flow losses,

which might explain some of the efficiency gains observed experimentally. The high thermal

efficiencies measured in the experiments suggest that the alkali metals also have some impact on

the anode thermal losses which plague gas-fed MPD engines. A more sophisticated analysis of

the anode region would be required to verify this, however.

The alkali metals are also very effective in lowering the work function when adsorbed on

the surface of refractory metal cathodes. A reduction in the work function allows lower operating

temperatures, resulting in lower cathode erosion rates. A model of alkali metal adsorption used
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to determinethe thermionicemissioncapabilitiesof a tungstencathodeasa function of surface

temperature and alkali metal vapor pressure and temperature is presented in the paper.

The impact of alkali metal propellants on test facility requirements and other spacecraft

systems was also examined. One demonstrated advantage of alkali metals is that they are easily
pumped. The low vapor pressure metals simply condense on the vacuum chamber walls at room

temperature. Facility pumping requirements with alkali metals are therefore much less

demanding. One of the largest costs in a full-scale multimegawatt engine development program

will be the construction of a facility with adequate pumping capability, and the use of

condensable propellants may enable an otherwise unaffordable test program.

The alkali metals are extremely reactive and exothermically react with water or water

vapor to form hydrogen, so they represent a potential combustion hazard. In addition, the alkali

metal hydroxides formed in these reactions are caustic, so care must be taken when operating and
cleaning a test facility.

The greatest risk in the development of alkali metal-fed engines is the potential for

spacecraft contamination. The plumes of MPD thrusters have not been sufficiently well-

characterized to estimate the backflow of particles. However, even for modest fluxes, high
surface temperatures are required to prevent the bulk condensation of alkali metals. Several

strategies for minimizing the contamination potential from condensable propellants are discussed
in the paper.

The conclusion of the review of alkali metal propellant experience was that an investment

in an experimental program is justified. Alkali metals, particularly lithium, appear to provide the

greatest leverage of any current approach in bridging the gap between MPD thruster capabilities

and mission requirements. The experimental program priorities should include:

1,

2.

3.

4.

5.

The development of a reliable alkali metal propellant flow metering system, a

thruster, and a test facility.

Establishment of proper handling procedures to guarantee the safe use of alkali
metals.

Verification of previous performance measurements.

Investigation of cathode operation in an alkali metal vapor environment.

Characterization of the plume in conjunction with the development of plume

modeling capability to assess the spacecraft contamination potential.

Once these preliminary tasks have been completed, the engine should be scaled to the appropriate

power level and adequate endurance demonstrated.
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A 5,000 HOUR XENON HOLLOW CATHODE LIFE TEST

John R. Brophy" and Charles E. Garner"

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

A 6.35 mm diameter hollow cathode was successfully Operated for a total of 5,024 hours at an
emission current of 25 A. Over this time the cathode orifice diameter eroded from 1.80 mm
(0.071") to 2.08 mm (0.082"), resulting ha a final emission current to orifice diameter ratio or
12 A/ram. Post-test analyses revealed tungsten deposits on the haterlor surface or the Insert and

x-ray diffraction analyses of the Insert suggest complete depaetlon or the original impregnate.
The successful completion of the scheduled 5,000 hr test, however, suggests that chemkal

reactions whkh use the reaction products originating from the depletion of the original
Impregnate serve to produce free barham and significantly extend the life of the cathode at an

operating Iem_ritu_ Substantially ibove i,i_ _C._ Ana_yy_ of material sputtered from _e
walls and anode of the test apparatus provide physical evidence In support of a cathode Jet
phenomena In which energetic ions are produced during hollow cathode operation at emission
currents above 20 A.

Introduction

The power-limited, low thrust nature of ion propulsion

necessitates very long engine burn times to accomplish

typical missions of interest. Engine burn times of 10,000

to 15,000 hours are typically required for deep space

missions. The hollow cathode, which is a key component

of ion engines, must be capable of reliable, long term

operation. Hollow cathodes have been under development
for ion engines since the middle 1960's _and have been the

subject of numerous studies and endurance tests. I-r_ The

vast majority of these investigations performed up until the

early 1980's used mercury as the working fluid, although

some early studies also used cesium. With mercury vapor,

cathode operation was found to be very reliable, and a

useful life-time greater than 25,000 hours was
demonstrated is with a 6.35-mm diameter hollow cathode

operating at a discharge current of 10.5-11.5 A.

More recently ion engine research and development

efforts have centered on the use of rare gases (argon,

krypton and xenon) rather than mercury. Along with this

switch from mercury is the present trend toward operation

at higher engine power and thrust levels. These higher

"Member of the Technical Staff, Electric

Propulsion and Plasma Technology Group;
Member AIAA.
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power operating regimes require significandy greater

cathode emission currents. There is little long term, hollow

cathode operating experience with rare gases, especially at

emission currents above 15 A. Most notably a 6.35-mm
dia. hollow cathode was operated at an emission current of

6.3 A for approximately 4,000 h_, and a similar cathode ....

(but with a larger orifice diameter) was o_ted for 900
hours at an emission current of approximately 19 A. 3s In

both of these tests, which used xenon gas, the cathodes o

were tested as part of full-up engine life tests. In other -:

tests, a 12.7-mm dia. hollow cathode was operated on
argon for 1,000 hrs at an emission current of 100 A. _ A

more detailed sum_ of inert gas hollow cathode testing

is given by Verhey and MacRae. _

There have been no tests of a rare gas hollow cathode,
at an emission current required for a 5 kW class xenon ion

engine, in which the test duration was a significant fraction

of the engine design life time (typically 10,000 hrs35).

Therefore, the present program was initiated to perform a
5,000 hour test of a 6.35-mm dia. xenon hollow cathode at

an emission current of 25 A. The 25 A emission current

level was selected to be a more severe test of a cathode

similar to that which would be required to operate at an

"Copyright c 1991 by the American Institute of Aeronautics
and Astronautics, Inc. with permission"



emission current of approximately 19 A in the 5 kW engine
under development at NASA LeRC) 5 The test duration of

5,000 hours was selected to be half of the engine design
life, with the expectation that major design deficiencies
may be uncovered in this time span. Ultimately, cathode

tests of 10,000 hours or longer will be required.

The Cathode

Apparatus and Procedure

The cathode used in this test is shown schematically
in Fig. 1. The body of this cathode consists of a 6.35-mm
diameter by 57.12-mm long molybdenum tube with a
nominal wall thickness of 0.38 mm. This tube is electron

beam welded to a 2.54-mm thick molybdenum flange at the
upstream end, and a 2 % thoriated tungsten orifice plate
(shown in Fig. 2) is elecu'on beam welded to the
downstream end. The orifice plate is 1.52 mm thick with
a minimum orifice diameter of 1.80 ram. A 56 degree
half-angle chamfer is machined into the downstream face
of the orifice plate.
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Fig. 2 Cathode orifice plate (dimensions in
centimeters).

PASSAGE

Fig. 1 Life-test cathode schematic (dimensions in
centimeters)_

A 12.7-mm diameter by 12.7-ram long cartridge
heater assembly is used for the cathode tip heater. This
heater assembly consists of a molybdenum wire poued in
aluminum oxide surrounded by a molybdenum cup. The
cartridge heater is friction fiued over the downstream end
of the cathode tube. The downstream end of the cartridge
heater is positioned approximately 0.25 mm upstream of
the end of the cathode. One of the molybdenum heater
leads is crimp connected to a copper lead using the crimp
portion of a nickel lug. This entire lead assembly is
insulated using ceramic beads. The other molybdenum
heater lead is connected directly to the stainless steel

cathode flange with a stainless steel screw. No radiation

shielding is used around the heater assembly. It is
expected that with good thermal contact between the
cathode and the cartridge heater, the downstream face of
the heater will act as a radiation fin and facilitate cooling
of the cathode at high emission currents.

A 3.2-mm diameter stainless steel tube is welded into

the stainless steel cathode flange, and a gas passage is
machined into this flange as shown in Fig. 1. A gas tight
seal between the stainless steel and molybdenum flanges is
provided by a Grafoil gasket and a knife edge machined
into the downstream surface of the stainless steel flange.
Leak tests using niu'ogen indicate that this configuration is
leak fight at pressures up to at least 2.0x105 Pa (15 psig).
These leak tests are performed by plugging the cathode
orifice with a shaped elastomer and then submerging the
entire assembly in water. The internal cathode pressure
during operation is on the order of 2.7xl& Pa (20 torr) so
this seal arrangement is leak tight at a pressure two orders
of magnitude higher than required. A photograph of the
unassembled cathode is given in Fig. 3.

The cathode insert indicated in Fig. 1 consists of an

80 % dense porous tungsten cylinder impregnated with a
barium-calcium-aluminate oxide mix with a molar ratio of

4:1:1, and is identical to the inserts used in other recent
tests. _ The insert is 25.4-mm long and has a wall
thickness of 0.76 mm. A Mo-Re collar is brazed to the

upstream end of the insert to provide a transition material
from the tungsten insert to the three rhenium leads which
are brazed to this collar. The insert is placed into the
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cathode tube with the downstream end of the insert

touching the upstream face of the orifice plate. The insert _

leads are clipped so that they extend slightly beyond the
CRTHODE _ [ -- _ :upstreamsurfaceof the molybdenum cathode flange. The -.., --ST_RTER

ELECTRODE

assembly process of tightening the bolts which hold the _"4 _ _,OOE
stainless steel and molybdenum flanges together cnPncXT_NCE_f _

O HO°ETc%_1 ,,__J
compresses the insert leads and firmly holds the insert "_ I =, I'[ /against the orifice plate. The cathode tube was cleaned in -------_", _TIINK LINER

$IERRR _ _ I "',. Iacetone and then in alcohol prior to the insertion of the THERMflLMRSS['--'1 I _
FLOLJ I I I I

cathode insert. During the assembly of the cathode and CONTROLLER L_l_ [ I _ _ ""
installation of the cathode into the vacuum test facility, the _._....__ ]___.O.l Lpuflp-OUT LINE VpyROMETER

minutes, t__ k:_.;u,___;_ .ms,..,_to.

___-_. E_;_d__]__';t '__ )_ _ Fig' 4 Cathode life:test facility schematic.

____ These thermocouples were attached by Fast spot-welding

foiltothemolybdenumh.tersu a= Tho
wore ,o_-...... _ .......... _ second layer of tantalum foil was spot-welded over the

_' _ _; thermocouples to secure them in place. In addition, a
L_,_,__ disappearing-filament type optical pyrometer is used to

_1 measurethe temperature of the cathode as indicated in Fig.

,,,,,m_ ._,,_=,._rr_._..>__'S._ _ 4. The optical pyrometer was calibrated by placing a
Fig. 3 Life-test cathode components, standard lamp with a 2 % thoriated tungsten filament in the

Test Facility

The cathode test facility, which is shown in Fig. 4,
consists of a 0.91-m diameter by 2.1-m long stainless steel
vacuum tank with two 0.25-m diameter oil diffusion

pumps. The cathode is mounted in a J-Series ion engine
style cathode pole piece assembly with the baffle and baffle
support legs removed. The standard J-Series thruster

keeper assembly is used for the starter electrode. The
cathode pole piece assembly is bolted to a stainless Steel

plate which also supports the disk-shaped anode positioned
130 mm downstream of the Cathode. A cylindrical,

tantalum foil enclosure attached to the stainless steel plate
facilitates pressurization of the region between the cathode
and the anode, permitting operation at lower cathode flow
rates. The anode was fabricated from a SERT II thruster

style, fiat molybdenum ion extraction grid with tantalum
foil spot welded to the side facing away from the cathode,
and is radiation cooled.

Two W-5%Re/W-26%Re thermocouples were
attached to the downstream face of the cartridge tip heater.

vacuum system at the location of the cathode. The

calibration was accomplished by viewing the lamp through
the vacuum tank window over the same optical path used
in the life test.

The xenon feed system consists of approximately 1.8
m of 6.35-mm diameter stainless steel tubing followed by
15 cm of 1.59-ram diameter stainless steel tubing which

terminates at the stainless steel cathode flange. All tubing
pieces and fittings were cleaned in acetone and rinsed in

alcohol prior to assembly. A new MKS, Inc., 0-20 seem,
thermal mass flow meter is used to measure the xenon flow
rate into the cathode. Do_swcam of this flow meter, a
thermal mass flow controller from Sierra Instruments is

used to control the xenon flow rate. This arrangement
permits measurement of the flow rate independent of the
action of the flow controller, it also eliminates possible
therfiaai feed-back effects from the solenoid valve in the

flow controller from affecting the flow sensor.
Furthermore, this arrangement always results in the same

pressure downstream of the MKS flow meter, regardless of
the pressure to which the flow controller is exhausting. A
capacitance manometer positioned downstream of the flow
controller is used to measure the cathode internal pressure
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during operation. The capacitance manometer was
calibrated immediately prior to installation in the gas feed

system.
A separate pump-out line is included in the feed

system to facilitate removal of contaminant gases from the
feed lines. This pump-out line is connected into both sides
of the flow controller to provide a large diameter path for

the gas. Four shut-off valves are included in the feed
system to permit isolation of different feed system
components. The entire feed system was subjected to two
series of leak tests. In the first, the two pump-out line
shut-off valves were closed along with the shut-off valve
to the cathode. The feed lines were then pressurized to
2.45x105 Pa (35 psig) and carefully checked for leaks using

a soap-like bubble solution. No leaks of xenon gas out of
the system were detected. The second set of leak tests was
designed to look for air leaks into the feed system for those
components which would be operated at pressures less than
atmospheric pressure during normal operation. In this case
the feed system was pumped out to high vacuum for
several days, then all of the shut-off valves were closed

and the pressure increase indicated by the capacitance
manometer over another period of several days was
recorded. From these data a maximum leak rate into the

propellant feed system was estimated to be 2x10 "7standard
cm_/s.

Both the flow controller and the flow meter were

carefully calibrated prior to the initiation of the life test.
The new MKS thermal mass flow meter was calibrated at

the manufacturer's facility on the east coast of the United

States using nitrogen and a secondary calibration standard.
The flow meter was then shipped to JPL where it was
subsequendy taken to the manufacturer's facility on the
west coast and recalibrated onb0th nitrogen and xenon
using a primary volumetric calibration standard. Next, the
flow meter was calibrated in-house at IPL on nitrogen and

xenon using a secondary volumetric calibration standard
(i.e. a "bubble" volume calibradon kit from the Hastings
corporation).

The results of these calibrations are shown in Figs. 5
and 6. The comparison between the calibrations performed
with the MKS primary calibration standard and the
Hastings calibration kit is given in Fig. 5 for nitrogen.
These data indicate that the I-Iasdngs calibration kit agrees
well with the primary standard calibration. The calibrations

with the Hastings kit were performed on two separate days
with no difference in the results. In addition, the

calibration on nitrogen at the MKS facility indicated that
the Row meter's calibration had not changed (within the
manufacturer's tolerance of 0.8 % of full scale) as a result
of being shipped from the east coast to the west coast.

The data in Fig. 6 indicate the flow meter's response

16

E14
(J

•.-_ 12

ui

N 8
o
_J

u_ 6

LLI

_ 4
03

0
0 16

, I I I ! ! I /

NITROGEN /_

0-20 sccm MKS [2 /

• /
LINE OF PERFECT/_

CORRELA_,_

._ 0 HASTINGS3/20/90

r'_ 1-1HASTINGS.3/21/90

Z_ MKS PRIMARY CAL.

I ] I I I I I

2 4 6 8 10 12 14

INDICATED FLOW RATE, (sccm)

Fig. S Comparison of flow meter calibrations using
nitrogen.

10

E
1.1

i 8
"E 6

I--

o 4
_J
I.t.

ee

"_ 2VI

t_J

..s

0
0 10

I I I I

O 3/21/90 l ,_/_
n Io119190 I /,Z
z_

l_lmlclltlrltcl _" QIO "t" Oi1131ndloale d

1/21/'SO l O/I S/lie I./21I/S) I

a o 0.047 0.050 -0.531

a t 1.252 1.201 1.242
1 I I I

2 4 6 8

INDICATED FLOW RATE, rTllndle,i, d (seem)
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to xenon gas over the range of flow rates of interest for
calibrations performed at three different dates. A straight
line curve fit to the calibration data taken on 3/21/90
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indicates a slope of 1.22 and an intercept of 0.171. The
slope of 1.22 differs from the manufacturer's recommended
correction factor for xenon of 1.32 by a significant amount.
After seven months and more than 4,000 hours of

operation, the flow meter was recalibrated. The results of
this calibration performed on 10/19/90 indicate a slope of
1.20 and an intercept of 0.029. These calibration data
indicate a shift in the flow meter response after seven
months of continuous operation that a/fi_firifs--to
approximately 5 % of the flow rate. The shift is in the
direction that the actual flow rate is 5 % less than the

indicated flow rate. A final calibration was performed after
an additional three months on 1/28/91. These data indicate

a further zero shift, but essentially no change in slope from
the original 3/21/90 calibration.

Three power supplies ate used to start and run the
cathode: a tip heater supply, a starter supply, and the anode
supply, all of which ate 60 Hz laboratory supplies. The
starter supply is actually a parallel combination of two

separate supplies. One of which is a high voltage supply
capable of 900 V at 100 mA, and the other is a 35 V, i0
A supply with current regulation. Both the tip heater and

starter supplies ate only used to start the cathode. During
normal operation only the current regulated anode supply
is used. A calibrated 100 mV, 30 A current shunt is used

to measure the discharge current. Voltage sensing leads
connected to the anode and cathode inside the vacuum

system ate used to measure the discharge voltage.
Commercial heater elements were installed on the

vacuum tank liner in order to bake the tank liner out at

>100*C for 30 hours prior to the beginning of the test.
This bake-out procedure resulted in an ultimate tank
pressure of 9.3x10 s Pa (7x10 "7ton') at the start of the test.

After 4,000 hours of nearly continuous high vacuum
operation the no-flow tank pressure had decreased to
approximately 6.7x I0 s Pa (5x10 "_ton'). A computer data
acquisition and comrol system is used run to the life test
and enables long duration, unattended operation.

Start-Up Procedure

The following prOcedure is used to condition the
insert and start the cathode. The insert conditioning is
accomplished by first setting the xenon flow rate to the
normal run condition (4.0 seem). The tip heater current is
then set to 4.0 A and the cathode is heated to

approximately 500 *C (as indicated at the orifice plate) for
3 hours. After 3 hours the heater power is removed and
the cathode is allowed to cool for 30 minutes. The cathode
heater current is then set to 7.0 A and the cathode is heated

to > 1050 *C for 1 hour. After 1 hour the cathode is again
allowed to cool for 30 minutes after which the tip heater

current is set to 7.5 A to heat the cathode to > 1100 *C.
The cathode is heated under these conditions for 30

minutes before attempting to initiate the discharge.

Results

Operational Data

A summary of the cathode life test operating history
is given in Table 1. The first five shutdowns indicated in

this table were ultimately traced to a faulty anode power

supply. The faulty power supply was an SCR regulated
Sorenson supply which resuFtedin rather noisy operation of
the-_athode, as indicated in Figs. 7 and g. Current

oscillations, as indicated in Fig. 7, were typically +2.0 and
-3.5 A around a nominal value of 25.1 A, with a frequency
of approximately 80 kHz. The corresponding Vol_ge
oscillations are"sh0_;n in Fig. 8 where the average voltage
is 19 V with spikes to greater than 65 V. These data were
taken with a xenon flow rate of 4.0 seem. After 123 hours
Of operation, die faulty Sorenson power supply was

replaced with a transistor regulated Hewlett-Packard supply.
Operation on the Hewlett-Packard power supply was

significantly less noisy than with the Sorenson supply, as
indicated in Figs. 9 and 10. This figure shows a discharge
current oscillation of +_0.75 A with a frequency of 5 kHz.
A higher frequency oscillation (approximately 100 kHz)
superimposed on this 5 kHz oscillation is also evident from

this oscilloscope trace. Discharge voltage spikes, with
occasional peaks to +30 V, were also detected at this
frequency. The switch from the Sorenson to the Hewlett-

Packard power supply also resulted in a decrease in orifice
plate temperature of approximately 50 *C.

With the exception of the first 123 hours, the entire

test was conducted with the Hewlett-Packard supply, and
the discharge current oscillations shown in Fig. 9 remained
unchanged until approximately 4,000 hours of operation.
At this time a low frequency oscillation (330 Hz) appeared.
The magnitude of this oscillation was _ A for the current
and +2 V for the discharge voltage as indicated in Figs. 11
and 12. The very high frequency (100 kHz) oscillations
were still present at this time, but the 5 kHz oscillations
had disappeared. By increasing the xenon flow rate from
4.0 sccm to 5.0 sccm the low frequency oscillations were
eliminated. Operation at the higher flow rate, however,
resulted in an anode voltage of only 12 V. By run hour
4,700 the cathode could again be operated at an indicated
flow rate of 4.0 sccm without the appearance of the 330 Hz
oscillations. At the end of the test (after 5,024 hours of
operation) there appeared to be very little noise in either
the discharge current or voltage as indicated in Figs. 13 and
14.
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Fig. 7 Discharge current oscillations with Sorenson

anode power supply; 2 A per major division.

Fig, 9 Discharge current oscillations with Hewlett-
Packard anode power supply; 2 A per major division.

Fig. 8 Discharge voltage oscillations with Sorenson

anode power supply; 20 V per major division.

Shutdown number 7 resulted from a nearby lightning

strike which momentarily removed power from the

diffusion pump high vacuum valves, causing them to close.

The computer detected the resulting increase in tank

pressure and shut down the cathode. Shutdown number 9
occurred when both the primary and the backup printers

failed and the computer responded by turning off the

cathode. Shutdowns 8,10 and 11 resulted from failures in

the data acquisition hardware, which, when detected by the

computer, caused the computer to shut down the test. A

software change to increase the tolerance to data

acquisition system errors eliminated these shutdowns.

Fig. 10 Discharge voltage oscillations with Hewlett-
Packard anode power supply; 20 V per major division.

Of the 20 shutdowns which occurred in the course of

the 5,000 hour test, 11 occurred in the first 750 hours.

Shutdown number 12 occurred as a result of a broken belt

in one of the two mechanical pumps backing the diffusion

pumps. Shutdown number 13 resulted from another

lightning strike which again momentarily removed power
from the laboratory. The 14th shutdown was a result of

operator error. This error occurred near the depletion of
the 1000 liter bottle of xenon used in the test. The high

pressure side of the regulator indicated zero pressure, but
the low pressure side still indicated 2.5x105 Pa (35 psig).

In an attempt to determine the remaining boule pressure,
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Fig. 11 Low frequency (330 Hz) discharge current
oscillations; 2 A per major division, r

Fig. 12 LOW frequency (330 Hz) discharge voltage
oscillations; 2 V per major division.

the regulated pressure setting was increased until it reached

the supply pressure. The flow controller, however, could
not respond adequately to the change in upstream pressure,
resulting in a momentary decrease in the flow rate to the

cathode. This decrease in flow rate resulted in a discharge
voltage which exceeded the maximum allowable voltage
level set in the computer, causing the computer to shut
down the cathode.

The 15th, 17th and 19th shutdowns were manual

shutdowns required to change xenon botdes. Shutdown
number 16 was caused by failure of the Sierra thermal
mass flow controller. The flow controller failure was such

that it slowly'decreased :the xenon flow rate over a period

of several hours. As the fl0w rate decreased, the discharge
voltage increased. When the discharge voltage exceeded
the maximum allowable voltage level, the computer shut
down the cathode. Finally, shhtdown= number 18 was the:

result of a windstorm which knocked out the laboratory _
facility power.

Also evident in the data in Table 1 are the conditions
required to restart the cathode following a shutdown. The

first 11 times the cathode was restarted, covering a period
of 743 hours of operation, the cathode started very easily,
and with relatively low voltages applied to the starter

electrodes. All of these restarts were performed with the
normal 4.0 seem xenon flow rate through the cathode. No
conditioning procedure was used prior to these restarts
since the cathode was maintained at high vacuum with
continuous xenon flow throughout each shutdown. The
lightning strikes which caused shutdowns 7 and 13

occu_ dufi-ng normal working hours and high vacuum
operation was restored within minutes. The 12th restart
required the application of 900 V to the starter electrode to
ignite the cathode. _ ......

Clearly evident in these data is the trend toward

increasing restart difficulty with operating time. The only
exception is restart number 14, which required 300 V
applied to the keeper. This restart, however, was

accomplished within minutes of the cathode shutdown, and
the cathode did not cool off significantlybefore the restart.
All other restarts were performed beginning with a c:bld
(i.e. room temperature) cathode. The last five cathode

restarts required a 200 torr gas pulse to force the transition

from the low current high voltage glow discharge mode to
the high current arc mode. In this ease, the application of
900 V to the keeper electrode resulted in a 900 V, 10 mA
glow discharge which would not transition to the arc mode.

To force this transition, the: starter supply was turned off
and the shut-off valve leading to the cathode was closed
until the pressure indicated by the capacitance manometer
indicated 200 ton'. At this time the shut-off valve was

opened rapidly and the starter supply was turned on to 900
V. This procedure caused the immediate establishment of
a 2.0 A arc discharge to the starter electrode which was
then easily transferred to the anode electrode. It should be
noted that the cathode tip heater used in the life test did not
cover the full axial length of the insert. It is not known

what effect, if any, this heater configuration may have had
on the observed increase in start-up difficulty over the
course of the test. A longer heater element, however,
would probably be capable of heating the upsffeam end of

A-8

=

=



ORIGINAL PA_E IS

OT PO0_ QUALITY

Fig. 13 Discharge current oscillations at the end of the
life-test; 2 A per major division.

Fig. 14 Discharge voltage oscillations at the end of the
life-test; 10 V per major division.

the cathode to temperaturesgTcaterthan waspossible with
the presentconfiguration,perhaps facilitatingcathodestart-
up due to the liberation of h'ee barium from the upstream
end of the cathode even after the cathode has been run for

extended periods of time.
A photographof thecathodeinoperationis givenin

Fig.15 and shows a close-upofthecathodeorificeplate.
Thisphotographwas takenafter4,046hoursof operation
and indicatesthe view of the cathodewhich the test

Fig. 15 Close-up of cathode orifice plate during
operation at run-hour 4,046.

operator seesthroughtheopticalpyrometer.The orifice

plateisclearlyvisiblethroughtheaperturein thestarter

electrode. Orifice plate temperatures ate normally taken at
a radiallocationcorrespondingto the midpointof the

visibleportionof the orificeplate. Temperature

measurements indicate a significant radial temperature

gradient along the orifice plate. The optical pyrometer was
also used to measurethetemperatureof theinsertitself.

The emittingsurfaceof the insertcan bc clearlysccn

throughthecathodeorificeasindicatedinthisphotograph.
Furthermore,the insertsurfaceappears considerably

brighterthanthe orificeplate. This photographalso
indicatesthatafter 4,046hoursof operation,thestarter
electrode does not appear to be significantly eroded, and no

material deposits on the interior diameter of the cathode
orifice are evident.

The variation in the orifice plate temperature as

measured by the optical pyrometer is given in Fig. 16 as a
function of cathode run time. The decrease in orifice plate

temperature resulting from the change in power supplies at
run hour 123 is clearly evident in this figure. Also evident
is that subsequent to the change in anode power supplies,

the orifice plate temperature remained essentially constant
at approximately 1125_2 until run hour 1,000. From 1,000
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Fig. 17 Brightness temperature of the downstream end

of the insert as measured by the optical pyrometer.

hours m approximately 3,000 hours the orifice plate
exhibits a gradual increasein temperature with a slope of
29 *C/ldv. These dam indicate an occasionalsignificant
decrease in orifice plate temperature. Thesedecreases are
accompanied by decreases in the temperatures of the
cathode flange and cathode support plate as indicated by

around 4,000 hours and 4.500 hours, respectively. The
large spikes in the anode current correspond to cathode re-
starts in which the cathode was operated at less than 25 A
for a short time. On the compressed time scale of Fig. 18
these short dine intervals appear as spikes. At the
beginning of the life test the discharge voltage was between

thermocouples located there, as well as by changes in the 19 and 21 volts. Afterapproximately 900 hrs the discharge
discharge voqtage_ The onlq'i_ plate tem_rafure W_ voltage dropped_-l_ V and remained there for 500 hrs.

approximately constant over the last 1,000 hours of the test. At roughly run hour 1400 the di_Taakgc-vo_g-e decreased
Beginning after run hour 2950, measurements of the to between 15 and i6 volts. This discharge Voltage__leye!

insert brightness temperature were made using the optical was maintained foi the next 1400 h=, after which the
pyrometer looking at the insert surface through file _&% -d_h_-ge v-01tage_gah-_dtiai increase backt0 _bund
orifice. Comparison of the insert and orifice plate
brightness temperatures are given in Fig. 17 coveting the
time period from 3,000 to 5,000 hours of cathode
operation. The insert and orifice plate temperatures appear
to be relatively well correlated, indicating that the insert

temperature measurement is real. The unexpected feature
of these data, however, is the magnitude of the insert
brightness temperature. Models of the insert barium
depletion _te (_ di'scussed i n a subsequent section_)predict
a very short life time for insert operation at the
temperatures indicated in this figure.

The anode current and voltage over _is __me time
period _e_ given in Fi_ 18. The anode _wer supply is

operated in the current regulating mode so that a constant
25 A anode current is maintained. The exception to this
are the two periods of unstable cathode operation occurring

A-IO

18 V. The discharge voltage spike at_nj_n_h_o_ 3_0359
corresponds to the flow controller failure. The other spikes

correspond to cathode shutdown/restart events.
The xenon flow rate, as measured by the MKS

thermal mass flow meter, and the interior cathode pressure
are given in Figs. 19 and 20, respectively. Again, the
spikes in the data represent short duration operation at
other flow rate settings. The cathode pressure data indicate

a s_lig__ht,_gradua! increase in_ the interio r pressure. The
temperature of the stainless steel cathode flange as a
function of run time is given in Fig. 21. In general, the
cathode flange temperature also shows a gradual increase
with time.
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Fig. 18 Anode current and voltage during the life-test.

Post-Test Analyses

The most surprising result from the life test was the
appearance of a substantial amount of sputter-deposited
material which had flaked-off from the walls of the

discharge enclosure and collected at the bottom of the
enclosure as indicated in Fig. 22. EDAX analyses of this
debris indicated that most of the flakes were comprised

primarily of tantalum (80%) and molybdenum (20%). Both
the cylindrical discharge enclosure and the cathode pole
piece were lined with tantalum foil. The anode and the
starter electrode were molybdenum. The anode was also

backed by a tantalum foil liner. Therefore, since most of
the materials exposed to the cathode discharge plasma were
tantalum and molybdenum, it is not surprising that the
EDAX analyses indicated the flakes were comprised of
these materials. What is surprising is that there was any
significant sputtering at all. Published ss values for the
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Fig. 19 Measured xenon flow rate during the life-test.
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Fig. 20 Interior cathode pressure during the life-test.

sputtering thresholds of tantalum (30 V) and molybdenum
(27 V) by xenon ions are significandy greater than the
discharge voltage level (15 to 20 V) during the test,

suggesting that there should have been little or no
sputtering of these materials. The appearance of flaked-off
sputter-deposited material at the bottom of the discharge
enclosure was first noticed after only 500 hours of cathode

operation.
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Fig. 21 Temperature of the stainless steel cathode
flange during the life-test.

Even more significantly, sputter-deposited material
peeled from the Outer regions of the anode exhibited a

surface covered with cone formations as shown in Fig. 23.
The formation of such cones can occur if the surface is
being sputtered by ions from the plasma while
simultaneously material sputtered from another location is
deposited on the surface) _ This implies that there must be

ions in the plasma which are energetic enough to sputter
materials which are at anode potential. Energetic ions are
known to be produced by operation of hollow cathodes at

emission currents greater than 20 A3' in what is generally
referred to as the cathode jet phenomena. 29 The results"

from the present test lend additional experimental support
for the existence of this cathode jet, but do not shed any
additional light on the mechanism responsible for its
formation.

A close-up photograph of the cathode and starter

electrode at the end of the 5,000 hour test is shown in Fig.
24. The two tungsten/rhenium thermocouples which were
originally attached to the downstream face of the cart_ridge
tip heater are also visible. These thermocouples both failed
approximately 500 hours into the test. The downstream
(visible) surface of the molybdenum starter electrode

appears to have been recrystallized.
There were no material deposits in the cathode orifice

at the end of the test. This is significandy different from
observations made both in-house and elsewhere 3_ that

cathodes tested as part of a complete engine exhibit
significant deposits of tungsten around the ID of the
cathode orifice. Such deposits have been observed for

MATERi

Fig. 22 Post-test condition of the discharge enclosure

showing a substantial amount of sputter-deposited
material.

cathodes operating in both ring-cusp and divergent-field
engine configurations. The explanation for the observed
difference in orifice deposits between the present cathode

life test and those cathodes tested in complete engines is
not apparent. However, this difference does underscore the

fact that long duration tests of cathodes by themselves,
although important, cannot guarantee adequate cathode life
in the engine itself. This can only be accomplished by
performing complete engine life-tests.

Starter Electrode: A photograph of the starter
electrode at the end of the test is given in Fig: 25. At the
start of the test this electrode had a uniform thickness of
1.52 mm. It is clear from Fig. 25 that the starter electrode

has been eroded from the downstream side, presumably by
sputtering. The starter electrode potential was typically l
or 2 volts above cathode potential throughout the test.
Near the center of the electrode it appears that the original
thickness has been reduced by a factor of two by the end
of the test. This corresponds to an erosion rate on the
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Fig. 23 SEM photograph of sputter-deposited material Fig. 25 Edge view of the starter electrode at the end of
removed from the anode showing the formation of cone- the life-test.

like surface features, order of 1500 angstroms/hr, which is substantially greater

than that of most other ion engine discharge chamber
Components. _ Erosion fates of this magnitude have only
been observed at one other location in the discharge
chamber of divergent-field thrusters, and that is at the

upstream side of the baffle which separates the cathode
from the main discharge chamber. _ It is likely that the
same mechanism which causes the high baffle erosion rates

in the divergent-field thruster is also responsible for the
high erosion rate of the starter electrode observed in this
test, as well as the high starter electrode erosion rate
observed by Patterson and Verhey. 35

Cathode Orifice Plate: SEM photographs of the

cathode orifice plate before and after the 5,000 hour test
are shown in Fig. 26. The initial orifice diameter was 1.80
mm (0.071"). At the end of the test the orifice diameter,
as determined from the SEM photograph, was 2.08 mm
(0.082"). This corresponds to a ratio of emission current
to orifice diameter at the end of the test of 12.0 A/mm,

which is exacdy the criteria specified by Kaufman 4x for
acceptable cathode tip life-time.

SEM photographs of the orifice plate-to-cathode tube
electron-beam welds before and after the test are shown in

Fig. 27. After 5,000 hours the weld has a "shingled"
appearance, and it is not known if the weld is still leak
tight. No leak tests were attempted at the end of the test
in order to not compromise the post test condition of the
insert.

A high magnification SEM photograph of the surface
of the tungsten orifice plate is shown in Fig. 28. The most

Fig. 24 Post-test condition of the cathode and starter interesting feature in this figure is the abundance of voids
electrode, in the surface with sizes ranging from roughly 1 to 10

microns. It has been suggested that these voids represent
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Fig. 26 SEM photograph of the cathode orifice before
(top) and after (bottom) the life-test.

the locations where the thorium from the original 2 %
thoriated tungsten material had accumulated and

subsequently evaporated.

Cathode Insert: The cathode and cartridge tip heater
assembly was cut in half lengthwise using a silicon-carbide
cutting tool with no lubrication. The resulting cut width
was approximately 0.74 ram. The two halves of the

cathode are shown in Fig. 29. Most notable in this
photograph are the material deposits located approximately
3 to 6 mm upstream of the orifice plate. EDAX analyses
of this material indicate that it is essentially pure tungsten.
There are no obvious locations on the insert from which

this tungsten could have originated, never-the-less the insert

itself is still believed to be the source of the tungsten.

Fig. 27 SEM photographs of the orifice plate-to-
cathode tube weld before (top) and after (bottom) the
life-test.

There are actually two different deposit sites, one
covering the _egi6n approximately 3 to 4 mm upstream of
the orifice plate and the other from 4 to 6 mm upsu'eam.
The material deposited in the 4 to 6 mm region is very
fragile and is easily separated from the rest of the insert.

The material deposited over the 3 to 4 mm region is firmly
attached to the in_-rt, has _i_surfa_ap_ce SimilaJ to
the first 3 mm of the insert, and is noticeably shinier than
the rest of the insert surface. The maximum thickness of

the deposit was estimated to be approximately 0.7_+0.2 mm.
The deposit appears to be axisymmetric, resulting in a
reduction in the interior diameter of the insert at this

location. The original ID of the insert was 3.81 mm
(0.150"). Using the approximate deposit thickness the
minimum ID of the insert was calculated to be 2.41 mm

(0.095") at the location of the deposits. This represcnts a
60 % reduction in cross-sectiona_ area, however, this area
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Fig. 28 SEM photograph (2000X) of the cathode orifice
plate after the life-test showing numerous surface voids.

CARTRIDGE HEATER

  FUI IGSTEN DEPOSITS

il ON INSERT

.:_

Fig.29 Life-lestcathodecut inhall"axiallyshowing

depositson the insert.

is still 34 % greater than the area of the orifice at the end
of the test.

The ID of the molybdenum cathode tube which was
not covered by the insert was covered by a brown film.
EDAX analyses of this film indicated it to be a very thin
layer of molybdenum oxide. The thinness of the layer
suggests that the source of oxygen was not from a leak in
the flow system, but may have been from the insert's oxide
impregnant. '2

X-ray diffraction analyses were performed on the
insert as a function of axial position along the insert. To
accomplish this one half of the insert was cut into six half-
disk shaped slices (again using a silicon carbide cuuing
tool with no lubrication). The slice thicknesses are shown

in Fig. 30. Each of these slices was ground-up into a
power using titanium-carbide tooling prior to performing
the x-ray diffraction analysis. This procedure was
necessary in order to obtain quantitative information
regarding the relative amounts of the chemical compounds
in the insert. The x-ray diffraction analyses were
performed in air.

The procedure of cutting the insert into slices also
freed theinsert from the molybdenum cathode tube, leaving
behind a residue on the tube ID. A summary of the EDAX
analyses of this residue is given in Table 2. At the
downstream end of the tube, the residue between the insert

and the molybdenum tube consists largely of tungsten,
barium and oxygen, most likely in the form of BaW04.
(The distribution by weight for BaWO, would be 48%,
35% and 16% for W, Ba and O, respectively.) Trace

amounts of calcium and aluminum are also present. The
residue under the upstream end of the insert consists

primarily of rhenium. The only sources of rhenium in the
cathode are the pig-tail leads brazed to the upstream end of
the insert.

The results from the x-ray diffraction analyses of the
ground-up insert slices is given in Table 3 and plotted in
Fig. 31. These data indicate the relative percentages of all

materials in the insert except tungsten: the insert is
typically 80% tungsten, and this constituent of the insert
has been ignored in the data in Table 3. The diffraction

analyses indicate the presence of only four compounds in
the insert. No trace of BaO was found, even though the
cathode was operating normally when the test was
voluntarily terminated. This evidently is not an unexpected
result. 43

A new, unused insert, identical to the one used in the
5,000 hr test was cut into slices and analyzed according to
the same procedures used for the life-test insert. X-ray
diffraction analyses of this new insert revealed small
quantities of BaO and CaO. No aluminum oxide

compounds were identified. This again is the expected
result: 3 The original impregnant is actually a complex

barium calcium aluminate compound of the form

Ba,.,Cae41207 where 0 < x < 1.1 ,

and the x-ray diffraction patterns, which change as a
function of x are not generally available: 3 The diffraction
analyses revealed diffraction patterns which could not bc
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Results of x-ray diffraction analyses on the

identified, but which may correspond to the Ba4.,,Ca,AI20:,
compounds. These patterns did not correspond to the
known diffraction patterns of Ba_CaAI40 n and
BaCa2AlaOn. These unidentified patterns were not present
in the life-test insert x-ray diffraction analyses.

Discussion of Cathode Insert Life

A cathode life time model, developed in Ref. 23,
gives the fraction of barium lost from the insert as a

function of insert temperature and operating time according
to the equation

--q-q-- B e -aIr C z12
qo , (l)

where a and B are constants with the values z3

a = 1_61 X_I0' [K]

B = 400 [hrta] .

(2)

(3)

In generaI _e :c-h_e_i&j" reaction for the_ lxoduction of
barium on a hot tungsten surface is given by TM

2Ba3A120 _ (s) + W(s)

" BaWO 4 (s) + 2BaAlzq (s) + 3Ba (g) (4)

If this is the only reaction producing free barium, then only
half of the initial barium can be used. The other half

becomes locqced-up in BaWO, and BaAI20,. However,
because of other possible reactions, inserts made of

impregnated_rous tungsten may be capable of dispensing
between 1/3 and 2/3 of the total impregnated barium? °
Thus, the most optimistic life time prediction would be
obtained from Eq. (1) by assuming that 213 of the initial
barium is available to lower the surface work function.

Assuming that the insert is at the brightness
temperature of 1500 *C, as indicated in Fig. 17, and
assuming that this temperature controls the insert life, then

Eq. (1) predicts an insert life of only 321 hours to deplete
2/3 of the total barium (q/q, --_0.67). However, the cathode

was successfully operated for 5,000 hours. Equation (1)
implicitly assumes that all of the barium that is evaporated
from the surface is immediately lost from the cathode.
However, as stated in Ref. 10, if the barium can be

prevented from permanently condensing on non-emitting
cathode surfaces, then a greatly increased insert life should
result. This can be accomplished if these other cathode

surfaces are maintained at or above 300 *(2,and preferably
above 400 *C.2s In the present life test cathode, the
temperature of the stainless steel flange at the back of the

cathode is typically 430 *C or greater, as indicated in Fig.
21, suggesting that the cathode life could be considerably
greater than that predicted by Eq. (1). In this case, the
barium that is evaporated from the insert may migrate to
other cathode surfaces, but the temperature of these

surfaces is such that the barium is prevented from
condensing. Eventually, the barium may return to the
insert surface. Under these circumstances, barium is lost
from the cathode only through the cathode orifice.

It is unlikely., however, that this non-condensing
feature of the life test cathode is sufficient to account for
the difference in predicted and demonstrated cathode life
times by itself. Other possibilities include:

1. A strong axial temperature gradient along the 25.4

==
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mm insert length, resulting in an average insert life

which is considerably greater than that determined by
the temperature at the downstream end.

, Barium reaction and evaporation rates at high
temperatures that are significantly different than those
represented by the constants in Eqs. (2) and (3). The
life time predictions from Eq. (1) are very sensitive to

the value of the constant which appears in the
exponential function.

. Chemical reactions other than that described by Eq.
(4) which take place at high temperatures to produce

a low work function coating on the insert.

Each of these possibilities will probably contribute to the
final explanation of the cathode life-time demonstrated in
the present test. However, the third possibility is the most

interesting and possibly the most significant.
The normal operating temperature range for cathodes

impregnated with a 4:1:1 molar ratio of barium calcium

aluminate is 1,000 to 1,100 *(2. Long duration operation at
temlx_.ratures greater than 1,100 *C will result in complete
conversion of the barium calcium aluminate into other

compounds, such as those on the right-hand-side of Eq. (4).
The higher the insert temperature, the more rapid is this
conversion.

At temperatures of at or above 1,500 *(2, however,
other chemical reactions become possible. (3 At these

temperatures either BaAl204 or Ba2CaWO,_ may react to
liberate free Ba, but the details of this chemistry are not

well understood. _3 The melting temperature for BaAl204 is
approximately 2170 *C, which is significantly above the
1500 *C melting temperature for the barium calcium
aluminate impregnant. This leads to the possibility of
impregnated cathodes which can operate for long periods
of time at temperatures significantly above 1,100 *C. This
possibility is significant not only for the development of
high-current hollow cathodes for ion engines, but also as a
foundation from which long-lived magnetoplasmadynamic

(MPD) thruster and arcjet cathodes may be developed.
Clearly there is a need for increased understanding of
impregnated, hollow cathode operation at high
temperatures.

Conclusions

A program was initiated to test a 6.35-mm diameter
hollow cathode for 5,000 hours at an emission current of
25 A. The test duration of 5,000 hours was selected to be
half of the ion engine design life-time of 10,000 hours with

the expectation that major design deficiencies would be
uncovered in this time period. The cathode life-test was

voluntarily terminated after 5,024 hours of operation at 25

A, resulting in a total demonstrated emission capability of
125,600 A-hrs.

Substantial sputtering of the test apparatus
components facing the cathode was observed despite
operation at a discharge voltage of < 20 V throughout the
test. Evidence for sputtering of materials at anode potential
was also found. These sputtering symptoms are consistent
with the existence of a cathode jet, comprised of energetic
ions, which may he created during operation at emission
currents greater than 20 A.

Optical measurements of the insert temperature during
the life-test indicated temperatures which are far too high
to be consistent with long term cathode operation. Yet the
cathode successfully operated for more than 5,000 hours
with little change in discharge voltage. Chemical reactions

using the reaction products from the original impregnant
may be responsible for the liberation of free barium at
temperatures well in excess of 1,100 *C. The possibility of
long-life operation for impregnated cathodes at

temperatures significantly above 1,100 *C may greatly
benefit the development of not only high-current hollow
cathodes for ion engines, but may also be a foundation
from which long-lived MPD thruster and arcjet cathodes
can be developed.
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Table 1 Cathode Life Test Summary

Shutdown
#

1

2

3

4

5

6

7

8

9

10

11

12.

13

14

15

16

17

Run

Time

(hrs)

40

62

114

121
II

122

123

295

558

581

697

743

1289

1649

2704

3020

3069

4221

Test

Segment
Duration

Oars)

40

Explanation

Low anode voltage detected by the computer.
Faulty anode power supply.

22 Faulty anode power supply.

52 Faulty anode power supply.

7 Faulty anode power supply.

1 Faulty anode power supply.

I

172

263

23

116

46

546

360

1055

316

49

Restart

Orifice

Plate

Temperature

(*C)

1152

Manual shutdown to change anode power
supply.

Lightning strike caused momentary facility
power outage. Computer shutdown cathode.

Data acquisition system failure. Computer
shutdown cathode.

Failure of primary and back-up printers.
Computer. shutdown cathode

Data acquisition system failure. Computer
shutdown cathode.

Data acquisition system failure. Computer
shutdown cathode.

Mechanical pump belt broke. Operator error led
to computer shutdown of cathode.

Lightning strike caused momentary facility
power outage. Computer shutdown cathode.

Operator error led to computer shutdown of
cathode.

1143

1047

1047

1047

1024

1029

1041

1052

1048

1041

1047

1153

1085

1050

Xenonbotfle changed. Gas pulserequiredto 1050
restart(200to_).

1050Flow controller failure. Computer shutdown
cathode. Cathode exposed to air for
approximately 5 minutes. Gas pulse required to
restart (200 torr).

Xenon bottle changed.
Gas pulse required to restart (200 tort)

1050

A-20

Conditions

Starl

Voltage
Required

(V)

25

22
., ,

I8

35

35

35

35

50

50

80

80

900

900

300

>9O0

>900

>900



Shutdown
#

18

19

20

Run

Time

(hrs)

4562

4927

5024

Test

Segment
Duration

(hrs)

341

365

97

Explanation

Windstorm caused facility power outage,
computer shutdown cathode. Gas pulse required
for restart (200 torr)

Xenon bottle changed. Gas pulse required for
restart (200 torr)

End of test.

Restart

Orifice

Plate

Temperature

(*c)

1050

1050

Conditions

Start

Voltage
Required

(v)

>900

>900

Table 2 Summary of Residual Deposits on Molybdenum Tube

POSITION"

2

3

4

5

W

35.1

39.9

WT%

Mo Re AI Ca

1.7

3.O

1.9

2.7 3.2

Ba

44.3

31.9

0

16.9

19.3

45.1 2.0 --- 1.4 2.0 31.0 18.5

43.6 1.0 --- 2A 2.4 32.9 18.5

1.9 34.5 63.6 ............

9.7 48.7 41.6

"Positions correspond to locations underneath the insert slices identified in Fig. 3 I.

Table 3 Post 5,000 hr Test Insert Constituents

RELATIVE PERCENT BY WEIGHT

POSITION BaAI20, BazCaWO_ Ba3W209 BaWO4

1 44 33 23 ---

2 50 50 ......

3 45 55 ......

4 21 ...... 79

5 22 ...... 78

6 20 14 --- 66
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METAL AND METAL NITRIDE EROSION RATES
IN A DIVERGENT FIELD ION ENGINE

Charles E. Garner*, John R. Brophy**, and L.C. Pless +

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, Ca 91109

_S_A_

Erosion measurements were performed in a 30-cm diameter
divergent-field ion engine modified for operation on argon
propellant. The erosion rates of tantalum, tantalum
nitride, titanium, and titanium nitride badges placed in the
discharge chamber were measured as a function of the

percentage of nitrogen (by mass) added to the argon
propellanL The erosion rates of the metals tantalum and
titanium were lower than those of the corresponding metal

nitrides, both when the ion engine was operated on pure
argon propellant, and when the engine was operated on a
mixture of argon and nitrogen (3% by mass). In addition,
the erosion rates of the recta] nitrides were also reduced

when nitrogen was added to the argon propellant.

Ion engine operating life is limited, in-part, by
ion sputter erosion of surfaces in the discharge chamber

which are at or near cathode potential. Internal engine
components subject to ion sputtering include the screen
grid, the cathode starter electrode (keeper), and in the J-
series ion engine, the baffle and pole piece assembly. For
several reasons, inert gases have replaced mercury as the
propellants of choice for interplanetary and earth-orbital
ion propulsion systems. Erosion rates within the ion

engine discharge chamber, however, are expected to be
greater with inert gas propellants than the corresponding

rates with mercury. This is due primarily to the higher
sputter yields of the inert gases as compared to mercury.

Data on erosion and wear rates within the

discharge chamber of ion engines operated on inert gases
are limited. During the 5kW, xenon ring-cusp
wear test recently conducted at the NASA Lewis Research
Center (LeRC), the cathode starter electrode was severely
eroded within 890 hours. 1 In high current hollow cathode

testing conducted at JPL, significant erosion of the pole

piece and other components was observed in the vicinit_
of the hollow cathode operated on argon at 100 amperes, z
in spite of the low discharge voltage (less than 24 volts)
which was used in the test. In 1988 a screen grid life of
7000 hours 3 was inferred fiom a I 0 kW xenon thruster life

evaluation test; however, there was a good deal of
uncertainty in the screen grid llfe estimate.

In 1987, J-series ion thruster erosion testing 4
revealed unexpectedly high erosion _ _dhlghly peaked
erosion profiles on the cathode side of the baffle, a result
substantiated by later tests 3. During testing of a high
current hollow cattgxle 2 it was ob_ed_ a weil-det'med

and collimated plume was produced by the Cathode When it
was operated at a high emission current. A section of the
anode face plate 15 cm downstream of the cathode was

eroded, even though this face plate was at anode potential.
As a result of this testing it was suggested that a cathode

jet having ion energies of tens of eV might be the
mechanism responsible for the high erosion rates observed
at the cathode side of the baffle 2. At sufficiently high

discharge currents this cathode jet might result in increased
screen grid erosion.

Techniques which could be used to reduce

discharge chamber erosion include reducing the discharge
voltage, which reduces the energy of the sputtering ions,
and reduci_g the propellant utiiizado-n efficiency

(propellantufil_onefficiencyisdefinedas_e fmc.tion
of the neutralpropellantflow which is ionizedand

extractedasbeam ions),which reducesthe fractionof

multiplychargedions.However,itmay be desirableto

operateion enginesat thehighestpossibledischarge

voltageandpropellantutilizationtoreducethenumberof

neutralsescapingfrom thedischargechamber. These

neutralsareresponsibleforthecreationofcharge-exchange

ionswhichcanerodetheacceleratorgridatunacceptably
highrates.I Thus,internalcomponenterosionmay be

traded against accelerator grid erosion.

* Member of the Technical Staff, Electric Propulsion and
Plasma Technology Group. Member AIAA.

** Supervisor, Electric Propulsion and Plasma Techno-
logy Group. Member AIAA.

+ Member of the Technical Staff, Electric Power Systems
Section.

Previous testing of J-series mercury ion engines
indicated that the presence of certain facility background
gases reduced molybdenum screen grid erosion. 5"7
Subsequently it was proposed 8 that small quantifies of

nitrogen added to the mercury propellant could reduce
discharge chamber component erosion and extend the
useful life of the engine. Preliminary data 4,9,10 have

suggested that the addition of small quantities of nitrogen
to the xenon propellant reduces erosion within the
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discharge chamber of xenon ion engines. It was proposed 6
that the mechanism responsible for the reduced erosion
rates observed when nitrogen or other facility gases are
present within the discharge chamber is the formation of
sputter-resistant oxides or nitrides that have lower ion

sputter erosion rates than the native metal. However,
there are no sputter yield data for metals and metal nitrides
in the 30-60 eV range. Subsequently, it was suggested 7

that resorption of chemisorbed nitrogen was the dominant
mechanism for reduced ion engine discharge chamber
erosion rates observed in these and other tests.

In reference 10 are definitive analyses to verify
the formation of tantalum nitride in the ion engine

disch_ge chamber. However, there are some aspects of
data4,9,10 obtained from previous testing which do not

support the theory that erosion reduction is due to
formation of spuver-resistant metal nitrides:

(1) No definitive evidence was found for existence of
molybdenum nitride4,9,10, despite reduced molybdenum
erosion rates measured from badges placed at the screen
grid and discharge side of the baffle.

(2) The greatest erosion reduction has been measured

at the cathode side of the baffle, where badges arc eroded by
high-energy ions in the cathode jet2. Differences in ion

sputter yields of different materials generally decrease
with increasing ion energy, therefore if the mechanism for
erosion reduction is formation of sputter-resistant nitrides,
the erosion rate reduction factor at the cathode face of the

baffle should be reduced, relative to other locations in the
discharge chamber where badges are presumably eroded by
lower energy ions.

This paper presents the results of a continuing
investigation of the effects of the addition of small
quantities of nitrogen on ion engine discharge chamber
erosion. The erosion rates for various metals and metal

nitrides are presented as a function of the percentage of
nitrogen added to the argon propellant. Finally, the two
mechanisms, chemisorption and sputter-resistant metal
nitrides, are discussed to account for reduced erosion rates
observed in these and other tests.

EXPERIMENTAL PROCEDURE

Erosion tests were performed using a 900-series
30 cm ion engine discharge chamber modified for use with
argon propellant. The 900-series ion engine, which is
very similar to the J-series ion thruster, employs art
axially diverging magnetic field in the discharge chamber
to increase engine efficiency. The engine was operated
without beam extraction in a stainless steel vacuum

chamber 0.7 meters in diameter and 1.4 meters in length,
and pumped by silicone-based oil diffusion pumps.
Vacuum tank pressure was measured using an ionization

gauge tube and comroller. The no-load tank pressure prior
to flowing argon into the ion engine was typically 1.6-
2.5x10 -4 Pa (l.9x10 -6 torr). Tank pressure during engine
operation was typically 2.8xi0 "2 Pa (2.1x10 "4) torr. No

cold liner was used to trap water vapor and
other volatile gases in the vacuum chamber.

Polished erosion badges were placed in a badge
holder made from 302 stainless-steel, which was mounted

to a tantalum baffle in the discharge chamber at the
location shown in Fig. 1. The same tantalum baffle was
used in all tests. The tantalum baffle and all the tantalum

erosion badges used in the experiments were machined
from a single sheet of electron-beam melted tantalum.

Tantalum nitride and titanium nitride samples
were cut from 6.35 mm thick discs of solid metal nitride

that were originally fabricated for use as sputter targets in
the microelectronics industry. The metal nitride targets
were formed by sintering tantalum or titanium powders in
an ammonia-rich atmosphere. Tantalum nitride and
titanium nitride were selected because of their high

melting points and low chemical reactivity at high
temperatures 11,12. Since these materials were already
nitrides, it was expected that their materials properties,
such as sputter yield, would not change when nitrogen was

added to the propellant. TaN and TiN materials
characteristics are listed in Table 1.

The polished erosion badges were masked using
0.076 mm thick tantalum foils having a cross-shaped

pattern 2.0 mm wide and 20.0 mm in length to expose the
underlying badge material to the discharge chamber plasma
(Fig. 2). Data were taken both at the center comer, where
it is assumed that all badges are exposed to identical

plasma conditions, and at locations of the cross-shaped
pattern farthest from the center.

Material erosion rates were determined by
measuring the trench depth eroded into unmasked portions
of the erosion badges by discharge chamber ions. A
prol_dometercapable of resolving surface features as low as
20 angstroms was used to measure trench depths. Trench
depths from the profilometer traces were determined as
follows: The uneroded surface height (baseline heigh0 of
the sample was determined as an average of peaks and
trough heights in the uneroded region of the sample ('Fig.
3). The same procedure was used for the etched regions,
with only a 0.32 mm long region considered for purposes
of determining the trench depth of the sample. This 0.32
mm region is 13 mask thicknesses away from the mask
edge; previous experimental data 4 suggest that this is a
suitable distance to minimize mask effects on the etch

rates of the erosion badges. Furthermore, it is far enough
away from the sample edge such that there is no spurious

data due to roll-off at the badge edges.
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chamber showing the locations of erosion
badges.

I
i
I
I
i
I

BAFFLE

- r

i_ii_ TiN

MASKED ERODED
AREAS AREAS
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Fig. 3. Simulated profilometer trace used to determine the depth of the trench eroded into the
erosion badge by discharge chamber ions.
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TABLE 1. MATERIALS PROPERTIES OF TA NIl'RIDE AND TI NITRIDE.

MATERIAL COLOR DENSITY MELTING ELECTRICAL

POINT RESISTIVITY

g/cm3 oC l.tf2-cm

Ta Nitride Grey 16.3" 2980 80

Ti Nitride Golden Yellow 5.4 2950 200

* Value supplied by vendor Material Safety Data Sheet.

The average erosion rate was determined

subjectively by estimating an average surface location
between the peaks and troughs in the eroded region, and
then calculating the difference in heights between this
subjective estimate and the baseline. Uncertainties in the

erosion depth measurements were _ined by adding the
peaks in the baseline to the troughs in the eroded region to
determine the maximum erosion rate, and troughs in the
baseline to peaks in the eroded region to determine the

minimum erosion rate. The erosion badges were polished
to the specifications shown in Table 2.

Table 2. Erosion Badge Polishing Specifications

Badge Surface

Material Roughness

Angstrom

Molybdenum + 350
Tantalum :1:500
Ta Nitride :1:7500

Titanium :!: 2000
Ti Nitride :1:25000

The uncertainties in the erosion rate

measurements were due primarily to the formation of deep
valleys and high peaks in the portions of the badges
exposed to the discharge plasma ions (Fig. 3). Because
the discharge was operated for only 54-110 hours during
each test, and because of the formation of peaks and
valleys in the eroded region, there is a significant amount
of uncertainty in some of the erosion data. The test

periods were selected to allow many experimental
conditions to be investigated. This technique could be used
with longer duration tests to greatly reduce the

measurement uncertainties. Long-duration discharge
chamber erosion studies were beyond the scope of this
work and are a topic for future investigations.

The engine cathode flow rates were controlled by
a manual micrometer valve, and main flow rates were

controlled by an electronic flow controller. Research-grade
bottles of both pure argon and argon containing between
2.95-3.05% nitrogen by mass were procured. After the
propellant system was assembled, the mass flow meters

were calibrated in-house on the pure argon or
argon/nitrogen mixture using a bubble volumeter. A
curve fit was used to interpolate betweenthe calibration
points.

Backflow of argon or nitrogen into the ion engine
was calculated using the method developed by Wilbur et
al. 13 The largest source of error in the uncertainty
analysis of the argon and nitrogen engine flow was the
backflow calculation. This was due to uncertain

knowledge of the local tank wall temperature, which
affects the rate at which facility gases (primarily argon,
nitrogen and water vapor) backflow into the thruster.

Tank wall tem_ were measm-ed with thermocouples

at two locations during testing. The backflow of nitrogen
and argon, both a function of tank pressure, were

calculated and added to the values of argon or nitrogen
injected into the engine through the propellant system.

A computer data acquisition and control system
monitored the tank pressure, engine discharge voltage and
current, and engine propellant flow rates. Typical engine
operating conditions are shown in Table 3. The discharge
voltage was typically 40.0 + 0.2V. In some instances

the discharge voltage varied by :t: 0.75 V ; larger voltage
variations that occurred within a time band of
approximately 2 seconds were not measured due to
limitations in the data acquisition system.

Table 3. Ion Engine Operating Conditions Used for
Erosion Testing

Discharge Current (A) : 20.1
Discharge Voltage (V) : 40.0
Cathode Flow Rate (sccm) : 9.8
Main Flow Rate (seem) : 10.3
Tank Pressure (no load) (ton) 1.8x 10-6

Tank Pressure (engine on) (tort) 2.1x10 -4
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The erosion tests were conducted in the following

manner. Erosion badges were placed in the discharge

chamber, with the polished face of the badges facing the

screen grid. At this location, the erosion badges should be

eroded by plasma ions with an energy of approximately 40

eV; it is estimated that about 10% of the plasma ions are

doubly-charged with an energy of approximatel)' 80 eV.
• The vacuum tank was then pumped to 2.1xI0"4 Pa with

the propellant lines open to vacuum up to the propellant

tank valve such that the propellant lines were at high

vacuum. Next, propellant was flowed into the engine, and

the ion engine discharge chamber plasma initiated. The

run time clock was started when the plasma conditions

were adjusted to those listed in Table 3; this typically

required an operating time of less than 10 minutes at
conditions different from those listed in Table 3.

The tests were run for periods of .91-110 hours.

After a minimum cool-down period of 3.5 hours, the

vacuum tank was vented to atmosphere and the erosion

badges were removed from the engine and replaced with a

new set of erosion badges.

RESULTS AND DISCUSSION

Table 4 describes the pertinent test parameters and
the order in which the tests were conduct'cal.

Table 4. Ion Engine Plasma Chamber Erosion Testing

Test Test %N 2 Materials
# Duration Added To Tested

(Hrs) Argon

1 53.6 0 Ta,TaN,Ti,TiN,Mo

2 60.7 0 Ta,TaN,Ti,TiN

3 80.8 3.0 Ta,TaN,Ti,TiN

4 108.8 3.0 Ta,TaN

The effects on component erosion rates of adding

small quantities of nitrogen to the argon propellant are
depicted graphically in Figs. 4-5. Data are for erosion

rates at the center of the baffle. There is significant

uncertainty in some of the data due to the surface profiles

created by ion bombardment of the erosion badges during
engine operation, and to the short duration of the tests.

The data for tantalum and tantalum nitride from Test # 3

are not shown; it is believed that deposits from the mask

which arose from poor contact affected the data. The mask
contact with the titanium and titanium nitride, however,

was good.

The data shown in Table 5 that were taken at a

location approximately 9 mm from the center showed no

significant differences relative to data taken at the baffle

center. It appears that on the discharge face of the baffle,
the erosion rate is uniform over an area of diameter 20.0

mm or more.
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TABLE 5. COMPARISON BETWEEN EROSION RATES AT BADGE CENTER AND AT 9
MM DISTANT FROM CENTER.

MA'I_RIAL TEST# DISTANCE EROSION RATE
FROM CENTER MIN AVE MAX

O O O

mm A/Hr A/Hr A/Hr

Tantalum 4
u m

Center 87 97 108

9 92 I01 124

Ta Nitride 4
n

0 83 221 331

9 92 207 239
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TABLE 6. SPUTTER YIELD ESTIMATES FOR EROSION BADGES
PLACED AT THE DISCHARGE SIDE OF THE BAFFLE.

TEST SAMPLE % N2 SPUTIER YIELD SPU'FrER YIELD
# MATERIAL IN CA_TED FROM Ref. 14

ARGON IX10-3 IX 10 -3

1 Molybdenum 0 4.4 6.0 i

1 Tantalum 0 1.0 2.1 i
1 Ta Nitride 0 1.8 *

2 Tantalum 0 0.84 2. I i
2 Ta Nitride 0 1.1 *

2 Titanium 0 0.97 6.0 i
2 Ti Nitride 0 2.4 *

3 Titanium 3 0.41 6.0 i
3 Ti Nitride 3 0.16 *

4 Tantalum 3 0.27 *
4 Ta Nitride 3 0.55 *

i interpolated from curve fit
data not available

The sputter yields of the materials listed in Table

6 were calculated by estimating the ion current density to
the erosion badges (app. 9.1 mA/cm2). Comparisons of

the sputter yields obtained in these tests to those given in
Ref. 14 are also listed in Table 6. Considering the great
amount of uncertainty in sputter yields of materials at low
ion energies, the agreement between the erosion tests made

using pure argon and the data in Ref. 14 are quite
reasonable, except for the sputter yield calculation for
titanium.

When the engine was operated on pure argon, the
erosion rates of tantalum and titanium were lower than

their corresponding nitrides, with tantalum having the
lowest erosion rate and titanium nitride having the
highest. When the engine was operated on the
argon/nitrogen mix, the erosion rates of all materials

tested decreased, relative to the tests conducted on pure
argon. Again, tantalum had the lowest erosion rate of the
materials tested. Titanium nitride showed the most

significant erosion reduction when nitrogen was added to
the argon; its erosion rate was reduced by a factor of 15.

In all experiments the discharge voltage and
current were held approximately fixed at the values listed
in Table 3. In addition, a performance degradation analysis
performed in Ref. 10, along with careful monitoring of
ion engine operating parameters (with beam extraction)
demonstrated that there is at most only a small degradation

in ion engine performance when small quantifies of
nitrogen (0-2% by mass) are added to the xenon propellant.
Since no erosion studies have been conducted with an ion
engine on a thrust stand, and since no materials have been

used which are not affected by the presence of nitrogen in
the propellant, it can not be definitively stated that no
changes in plasma conditions occur when nitrogen is added
to the propellant. However, it is clear that (i) the erosion

rates of all materials tested in this work and in previous
works were reduced when nitrogen was added to the
propellant, and (2) there ate no known mechanisms in

which adding nitrogen to the propellant could appreciably
change the energies or densities of propellant ions
bombarding surfaces in the discharge chamber that are at
cathode potential.

If it is accepted that propellant ion energies and
current densities in the discharge chamber remain
unchanged whether or not nitrogen is added to the
propellant, then the erosion reductions observed in this and
other tests are due to either the formation of sputter-
resistant metal nitrides, or to some other mechanism. The

results presented here indicate clearly that, at
approximately 40 eV the metal nitride erosion rates are
greater than the metal erosion rates; therefore, the
mechanism responsible for the reduced discharge chamber
component erosion rates can not be the formation of
surface nitrides that have a lower erosion rate than the pure
metal.
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The damare far from conclusive,however,dueto
the uncertaintiesin the erosion rate measurements and to
the fact that theerosion ratesof the basemetals may have
beenaffectedby gases(,primarilyni_'ogen or water vapor)
in the vacuumfacility that back-flowed into the discharge
chamberthrough thegrid holes. In addition,it is not clear
that erodinga metal nitride is an adequatesimulationto
the situation which exists when a metal is eroded in the
presenceof atomicor ionicnitrogen.

ALTERNATIVE MECHANISMS

A mechanism to accountfor reducederosion rates
in this and other works is proposed in reference 7 and
detailed in reference 15. This mechanism involves the

adsorptionof a surfacelayerof nitrogen and desorptionby
inert-gasion bombardment. Adsorption is defined as the
processin which a gas forms a layer on a surface. Two
types of adsorptionare distinguished:chemisorption,in
which the gas atoms are held by covalent bonds, and
physisorption,in which they are held by van der Waals
forces. In chemisorpdon,a single layerof adsorbedatoms
is held to the surface by a (normally) weak covalent bond.

Nitrogen chemisorbed on the surfaces of single-crystal

molybdenum and tungsten have a surface binding energy
of about 6.5 eV15; the propellant ions in the discharge
chamber have sufficient energy to remove these surface
nitrogen atoms via ion sputtering.

Chemisorpfion as a mechanism to reduce erosion

rates in an ion engine can be evaluated if the sputter yields
of base metal, chemisorbed nitrogen, and ion energies and

current densities are known. Unfortunately ion energies,
current densities, and sputter yields of both the base metals

or chemisorbed nitrogen ate not generally available.

However, reasonable approximations of sputter yields and
ion energies and current densities can be inferred from
various sources. Test data on the effects of the addition of

nitrogen on xenon ion engine erosion are presented in
references 9 and 10. A separate discussion will be

presented for molybdenum screen badge and tantalum
baffle erosion.

MOLYBDENUM SCRh'FN BADGE

In refe:mce 10, molybdenum screen badgesplaced
near the screen grid were eroded at a rate of 250 angstroms

per hour. Assuming an ion current density of
approximately 10 mA/cm 2, and a double/single ion

current ratio of 0.09, the sputter yields for singly and
doubly charg_ xenon ions on molybdenum are 3.4 x 10-4
and 8.5 x 10"_ respectively. Some experimental data on
the sputteringof chemisorbednitrogen from tungstenor
molybdenum are presented in references 15 and 16.
Argon, kJ'ypton,and xenon ion energies range from 25-
5000 eV; data from these referenceswere usedto infer
chemisorbednitrogensputteryieldsfrom molybdenumand

tantalum at low ion energies. Based on these data,
chemisorbed nitrogen sputter yields from molybdenum
were assumed to be one-half that of tungsten.

In reference 8 a model was developed to predict
the arrival rates of N, N2, N+, and N2+ to surfaces inside

the discharge chamber. Calculations made using this
model show that the arrival rate of nitrogen atoms and/or
ions was sufficient to provide complete (0.8-1.6 x
1015/cm 2) surface coverage of the molybdenum surface. In

reference 10, when 2% nitrogen by mass was added to the

xenon propellant, the erosion rate of the molybdenum was
reduced from 250 angstroms per hour, down to 15
angstroms per hour.

This information and the assumptions made
above on sputter yields and ion energies and current
densities were utilized to perform calculations on the

relative arrival and removal rates of chemisorbed nitrogen
at the molybdenum surface. These calculations show that

the chemisorbed nitrogen layer could substantially reduce
the net erosion rate of the underlying molybdenum, and
that chemisorption could have been the mechanism
responsible for the reduced erosion rates of the
molybdenum screen badges when nitrogen was added to the
xenon propellanL

In an ion engine, metals with a chemisorbed

nitrogen surface layer may have a smaller effective sputter
yield because incoming propellant ions must desorb

surface nitrogen. As the concentration of nitrogen
increases, surface coverage increases until it is complete
and the addition of mote nitrogen has little or no effect on
the erosion rate of the component. The data on
molybdenum screen grid erosion obtained in reference 10

can qualitatively be described by chemisorption; however,
because of the lack of hard data on sputter yields, nitrogen
arrival rates, sticking coefficients, and ion energies and
current densities, there is a good deal of uncertainty in
these calculations.

Since the mechanism for erosion reduction

observed in ion thruster discharge chambers may be
desorption of surface nitrogen and not formation of

sputter-resistant nitrides, the nitrogen in the discharge
chamber must be continuously replenished. From a

systems point of view, the simplest way to accomplish
that is to mix the nitrogen with the propellant, as was
done in these tests. The only deleterious effects on the
propulsion system are possible contamination of the
neutralizer or discharge chamber hollow cathodes. Tests
are underway at present to life test a hollow cathode on an

argon and 3% nitrogen mixture. If deleterious effects on
the physical chemistry of hollow cathodes occur, then a

nitrogen gas purifier can be placed in the propellant lines
that branch to the hollow cathodes.
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TANTALUM BAFFLE

The same analyses described above was applied to
erosion data measured at the cathode side of the baffle. In

reference 10 the cathode side of the tan_um baffle was

eroded at a rate of approximately 775 angstroms per hour
when the engine was operated on pure xenon, and 20
angstroms per hour when 2% by mass nitrogen was added
to the xenon. This high erosion rate on pure xenon
operation is due undoubtedly to high velocity ions in the
cathode jet2.

The first problem in this evaluation is that the
ion energies and current densities at the cathode side of the
baffle are not known. There are two ways in which the
xenon ion energy and current density at the cathode side of
the baffle were estimated. The first made use of the

cathode jet data from reference 17; in the second method
xenon sputter yields on tantalum were estimated using
yield data for argon and mercury.

Data from reference 17 indicate that, for a cathode
with a 1.1 mm diameter orifice and an emission currentof

11.g A, the xenon ion energy and current density were
approximately 25 eV and 5 mA/cm 2. The sputter yield
required for 775 angstroms per hour of erosion (the
amount observed in reference 10) would be approximately
3 x 10"3. This value is unlikely; references 18 and 19

provide sputter yield data for argon and mercury ion
bombardment of tantalum. Xenon on tantalum sputter

yields are not known, but can be approximated by
assuming that the sputter yields for tantalum under xenon
bombardment are half-way between the values for argon
and mercury. At 25 eV, a value of 1 x 10-4 is obtained,
which is a factor of 30 below the value calculated above.

It is therefore assumed that the xenon ion current density
and energy at the cathode side of the baffle must have been

much higher than 25 eV and/or 5 mA/cm2.

It is difficult to attribute such a large (factor of 30
or more) reduction in erosion at the cathode side of the

baffle to chemisorption, given the nitrogen sputter yields
on tungsten and estimates of the ion energies and current

densities at that location. There is data to indicate,
however, that yields for nimogen removed from a surface
where a nitride was formed can be substantially lower than
chemisorbed nitrogen sputter yields. 20 Yields for nitrogen

sputtered from molybdenum which was nitrided by 100 eV
N2 + ions were found to be a factor of 5 or more lower

than chemisorbed nitrogen sputter yields. In addition, the

nitrogen was trapped up to 8 monolayers below the
surface. These data suggest that a possible mechanism for
reduced erosion rates at the cathode side of the baffle is the
formation of surface nitrides, notwithstanding the data on
metal nitride erosion rates presented in this paper.

f_O.I2CI&k_2h_

Significant reductions in the erosion rates of
tantalum, titanium, tantalum nitride, and titanium nitride

were observed when nitrogen (3% by mass) was added to
the argon propellant. The effect is most pronounced for
titanium nitride, followed by tantalum, tantalum nitride,
and titanium.

The erosion rates of the metals tantalum and

titanium were lower than those of the corresponding metal
nitrides, both when the ion engine was operated on pure
argon propellant, and when the engine was operated on a
mixture of argon and nitrogen (3% by mass). These data,
coupled with data from othererosiontests,areinconsistent
with the theory that reduced erosion rates observedwhen
adding nitrogen to the propellant are due to the formation
of sputter-resistantmetal niuides.The erosion rates of the
base metals, however, may have been affected by backflow
of facility gases into the discharge chamber.

For purposes of this soaping calculation, we will
assume that the tantalum baffles used in reference 10 were

eroded by a cathode jet with an ion energy of 60 eV and a
current density of 12.5 mA/cm 2. In addition, it is
assumed that chemisorbed nitrogen sputter yields are

identical to those found in reference 16 for tungsten.
Assuming that under steady-state conditions there exists
full surface coverage, and a nitrogen sputter yield of 0.13
(inferred from reference 16), the xenon ion current density
required to remove one monolayer of surface nitrogen per
second is approximately 1.3 mA/cm 2. The total xenon

ion current arriving at the surface, however, is estimated to
be 12.5 mA/cm 2 and implies that the nitrogen current

density must be very high, with a sticking probability
approaching unity, to get the very low erosion rates
observed in reference I0 when nitrogen was added to the
xenon.

A mechanism to account for reduced erosion rates

at locations downstream of the baffle was suggested in
reference 7 and involves the desorption of chemisorbed
surface nitrogen by inert-gas ion bombardmenL Since the
binding energy of the nitrogen is less than that for the

metal, nitrogen should be preferentially sputtered.
These processes, when the surface nitrogen is
continuously replenished, as is the case when the nitrogen

is mixed with the propellant in an ion engine, may have a
significant effect on the effective sputter yield of metals in
ion engine discharge chambers. In an ion engine, metals
with a chemisorbed nitrogen surface layer may have a
smaller effective sputter yield because incoming propellant
ions must desorb surface nitrogen. As the concentration
of nitrogen increases, nitrogen surface coverage increases
until it is complete and the addition of more nitrogen has
little or no effect on the erosion rate of the component.
At the cathode side of the baffle, however, it is difficult to

attribute such large (factor of 30 or more) reductions in

B-10



erosiontochemisorption,giventhenitrogenspuueryields
ontungstenandestimatesof the ionenergiesandcurrent
densitiesof ionsin thecathodejet.
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AIAA 91-3566

Near-Term, lO0-kW Class Ion Engines

John R. Brophy*

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

A design approach for large area, high power Ion engines is presented. This approach
conceptually divides a single engine into a combination of smaller discharge chambers (or
segments) configured to operate as a single large area engine. This segmented Ion thruster
(SIT) approach is shown to enable the Immediate development of 100-kW class argon ion
engines for operation at a specific Impulse of 10,000 s. A combination of sLx30-cm diameter

Ion chambers operating as a single engine can process over 100 kW. Such a segmented ion
engine could be built today and would operate from a single power processor unit. The
segmented engine design approach may also enable the development of megawatt class Ion
engines. Potential benefits of the segmented ion thruster design Include: mitigation of the
span.to-gap problem central to the development of large area, high power ion engines;
reduction in hollow cathode emission current requirements; Improved fault tolerance; and
reduced vacuum system pumping speed reqnirements for engine development testing.

Nomenclature

D b = beam diameter

e = electronic charge (1.6x10 "_9cod.)

E = accelerator system electric field
E,_ = maximum electric field

fb = beam flatness parameter

JA = accelerator grid impingement current

Jb = beam current

J,a = neutralizer keeper current

1, = effective acceleration length

MA, = atomic mass of argon

Mx, = atomic mass of xenon

NPPH = normalized perveance per hole parameter

for xenon (2.84x10 "9 A/V _'_)

N, = number of chambers in the segmented ion
thruster

R = net-to-total voltage ratio

R, = span-to-gap ratio
T = thrust

V,a = neutralizer keeper voltage

Vr = total voltage between the gnds
-_ = total thrust loss factor

e b = dischargeloss(eV/beam ion)

,l,,= screengridopen area fraction

Introduction

High power ion propulsion systems have been shown

to be capable of providing substantial benefits for the

Space Exploration Initiative. a7 For ion propulsion to

fulfill this promise, however, requ_ the development of
ion engines which can process input powers on the order

of hundreds to thousands of kilowatts at specific impulses
in the range 7,000 to 10,000 seconds with useful lifetimes
of 10,000 hours.

From 1961 to approximately 1981 most ion engine
research focused on the use of mercury propellant. A

150-era diameter mercury ion engine was operated at input

powers as high as 130 kW with a specific impulse of
8,150 seconds and an overall efficiency of 70%. s In other

work a mercury ion engine was operated at specific
impulses greater than 16,000 seconds? The J-Series t°

mercury ion thruster, which was designed for a maximum

input power of 2.7 kW at a specific impulse of 3,000

seconds, was developed to nearly flight readiness for use

in the Solar Electric Propulsion Stage (SEPS).

Since 1981 most ion propulsion research has centered

on the use of noble gas propellants, with engine sizes

ranging from 10 cm to 50 era, tt_9 The 30-cm diameter J-

*Member of the Technical Staff, Member AIAA
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Series thruster has been operated at input powers up to 17
kW with a specific impulse of 4,400 seconds using xenon
propellant," and a 50-cm diameter thruster has been

operated at up to 20 kW at a specific impulse of 4,600
seconds also with xenon?'

Ion engines operate by ionizing the propellant gas
through electron bombardment and then accelerating the
resulting positive ions electrostaticaUy. The magnitude of
the applied high voltage which accelerates the ions and the

ion charge-to-mass ratio determine the exhaust velocity.
Typically greater than 85% of the input power is
processed by the positive high voltage supply which
accelerates the ions. Most of the remaining 15% of the
input power goes to creating the ions and is supplied by
a separate discharge power supply as indicated in the
generic power supply schematic shown in Fig. 1.

ANGOE

CA___ ACCELERATOR

-- _/ GRID

SUPPLY *

• ]_
NET

ACCELERATING

VOLTAGE

pOWER SUPPLY

I-
NEGATIVE GRID ]

I
NE,u'rRALIZgR CO_4OW

Fig. 1 Generic ion engine power supply schematic.

The attractive feature of ion propulsion is that the
electrostatic acceleration process is almost 100% efficient.

In practice the acceleration efficiency is typically 99.7%.
This nearly iossless acceleration mechanism promises to
enable the development of ion engines which can process
megawatts of input power while maintaining reasonable
engine component temperatures without active cooling. It
also is responsible for the high overall engine efficiencies
characteristic of ion propulsion. Furthermore, this feature

almost guarantees that the effort expended in scaling ion
engines up to the megawatt power level will be rewarded
with an engine efficiency that is close to that of current
projections.

This paper describes an approach to high power ion
engine design which enables near-term development of

noble gas ion engines capable of processing hundreds of
kilowatts of input power at specific impulses in the range
7,000 to 10,000 seconds. The use of this design approach
to scale ion engines up to the megawatt level is also
discussed.

Ion Engine Scaling

Space charge effects in the accelerator system of ion
engines place an upper limit on the thrust density (and
hence power density) which ion engines can achieve at a
given specific impulse. Therefore, to increase the power

and thrust capabilities of an ion engine it is necessary to
increase the area of the ion accelerator system while
maintaining a constant thrust density. For conventional

ion engines with a circular cross section, increasing the
accelerator system area is accomplished by increasing the
engine diameter. This has led to the development of
engines sizes ranging from 5 to 150 cm in diameter over
the past 30 years.

To maintain a constant thrust (and power) density as
the engine diameter is increased requires that the grid-to-
grid separation remain constant. This requirement results
in increasing values of the grid span-to-gap ratio, i.e., the
ratio of accelerator system diameter to the grid separation.
The current state-of-the-art, 30-cm diameter, ion
accelerator system has a span-to-gap ratio of

approximately 500. The maximum achievable span-to-gap
ratio is limited by mechanical constraints imposed by
fabrication and handling procedures, as well as by thermal
effects which serve to alter the grid separation during
engine operation.

A conventional circular ion engine using argon
propellant and operating at a specific impulse of 10,000
seconds would require a beam diameter of approximately
2.2 m to process one megawatt. Assuming a maximum
electric field between the grids of 3000 V/mm, this
thruster would require the development of an accelerator

system with a span-to-gap ratio of about 1700. This is a
factor of 3.4 beyond the state-of-the-art, and Would have
to be developed for an engine diameter which is more
than a factor of seven greater than the present 30 cm
thruster.

Aside from increasing the active grid area, the power
processed by an ion engine may be increased by
increasing the net accelerating voltage. For a given
propellant this voltage determines the engine specific
impulse. For the Space Exploration Initiative, specific

impulses in the range 7,000 to 10,000 seconds are
required. With argon propellant, this translates into net
accelerating voltages which are roughly a factor of two
higher than that typically used on the 30 cm thruster with
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xenon propellant (which was designed for operation at
specific impulses less than 4,000 seconds).

Finally, the use of lighter atomic mass propellants
increases the current handling capability of the accelerator
system at a given voltage, which in turn increases the
power processed by the engine. Therefore, to scale ion

engines up to megawatt power levels it is necessary to
significantly increase the active accelerator system area,

operate at high applied net accelerating voltages, and use
light atomic mass propellants. The last two of these items

must together be consistent with the specific impulse range
required for the application of the high power engine.

Segmented Engine Design

The development of 100-kW and megawatt class ion
engines must be achieved primarily by scaling up the
active grid area for beam extraction by one or two orders
of magnitude from the current state-of-the-art. To

overcome span-to-gap limitations associated with
continuously increasing the diameter of the conventional
circular ion engine, alternate engine geometries have been
proposed including an annular engine configuration _ and
a rectangular engine design? t This paper describes a
"Segmented Ion Thruster" (SIT) design in which multiple
grid sets together with discrete ion sources (or segments)
are used to increase the total active grid area per "engine."
An example of a SIT design which uses six discrete ion

sources is shown in Fig. 2. The total accelerator system
area is six times the area of each individual ion
segment.

ACTIVE BEJ_4 AREA ROUNDAR¥

$EGIqEHT 2

f SE_tENT

4

AND GROUND $CI_EE_t

Fig. 2 Example of a segmented ion thruster (SIT) with
six ion source chambers.
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Fig. 3 Power supply schematic for the segmented ion
thruster with six segments.

The six individual ion source segments are configured to
operate as a single ion engine from a single power
processor unit as suggested in Fig. 3. Multiple discharge
power supplies, as indicated in this schematic, are used to
individually control the emission current from each

cathode. A similar arrangement of multiple discharge
supplies was used to operate the 1.5-m diameter, 130-kW

mercury ion engine.' Heater power supplies for the
segment cathodes are not shown because the individual
discharge supplies could be used to heat the cathodes for

start-up. Similarly, separate cathode starter power supplies
are not shown. The high voltage required to start the
cathode is assumed to come from a boost supply which is
included in the discharge supply. A single positive net
accelerating voltage power supply, a single negative grid
high voltage power supply and a single set of neutralizer
power supplies complete the power processor unit for the
segmented ion thruster, i ............

Although not shown in Fig. 3, in practice each of the
segments would be electrically isolated from the others
through its own high voltage propellant isolators and
insulating standoffs. If a high voltage fault (such as a
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screento acceleratorgridshort)shoulddevelop in one
segment, that segment would be shut down and then

isolated from the high voltage power supplies through the
use of relays. Thus, failure of one segment would not
result in complete failure of the engine, but would instead

only decrease the engine thrust by the factor (N, - 1)IN,.
The SIT design may, in some sense, be considered as

the third step in ion engine evolution to higher power
levels. The lowest power ion sources are made with

accelerator systems that consist of a single aperture.
Child's law limits the total current that can be extracted

from this single aperture for a given applied voltage, and
typical power levels are tens of watts. The second

generation of ion sources make use of multiple aperture
accelerator systems. The current per hole is still limited
by Child's law but multiple holes ate used to significantly
increase the total current. For multiple aperture grid
systems the total current is limited by the achievable span-
to-gap ratio and by the maximum elec_c field which can

be sustained between the grids. With multiple aperture

grid systems steady-state ion engine power levels of up to
130 kW have been demonstrated.

The third step makes use of multiple grid sets per
engine. Span-to-gap and electric field considerations still

limit the current per grid set but multiple grid sets are
used to significantly increase the total beam current. Total

engine power levels of substantially greater than 100 kW

should be relatively easily achievable. This engine
configuration is somewhat analogous to a multicylinder
automobile engine. An alternate analogy is that of
segmented mirrors used in the development of large
optical telescopes.

The segmented engine design approach is feasible
largely because of the use of noble gas propellants rather
than mercury. This is due to the substantial simplification
of the propellant flow control system for noble gas
propellants relative to that for mercury. It should also be

noted that as far as the high voltage power supplies are
concerned, the segmented ion thruster configuration is
electrically indistinguishable from more conventional non-

segmented configurations. That is, the positive high
voltage power supply which accelerates the ions cannot

tell that the ions originate from separate discharge
chambers.

The SIT approach enables large total accelerator
system areas to be achieved through the use of smaller,
more manageable, individual ion source components. The
use of relatively small ion chamber diameters mitigates the

span-to-gap problem central to the development of large
area, high power ion engines. Furthermore, each segment
has a dedicated hollow cathode which operates at a

fraction of the total engine discharge current (depending
on the number of segments in the engine). This decreased
discharge current requirement and the use of one cathode

per ion chamber has the following additional advantages
relative to other high power ion engine design approaches:
it minimizes the cathode-jet problem of high current

hollow cathodes, it mitigates the plasma uniformity
problem characteristic of large diameter engines or
unusual engine geometries, and it eliminates the starting
problems associated with the use of multiple cathodes in
a single discharge chamber.

Performance Projections

Ion engine performance projections were made using
the equations given in Ref. 22 with appropriate
modifications for the SIT configuration. Briefly the beam
current for a given SIT configuration, assuming argon
propellant, is calculated from a perveance expression in
the following form,

k • 1 1 -'At
where N, is the number of segments in the SIT
configuration and Db is the active beam diameter of each

segment. The value for the normalized perveance per hole
parameter, NPPH, was selected to provide the best fit to
experimental pervcance data for 30-cm diameterion

engines operating on xenon." The square root of the ratio
of xenon to argon atomic masses corrects Eq. (I) for the
use of argon instead of xenon. The total voltage, Vr and
effective acceleration length, i,, in Eq. (1) are calculated
for each case to be consistent with assumptions made for
the maximum span-to-gap ratio, the maximum electric
field between the grids, the allowable range of the net-to-
total voltage ratio, and the desired specific impulse. Once
the beam current is calculated from Eq. (1) the thrust and
input power are calculated as follows,

•, ,v,a,._b,I z_rA'Vr R, (2)

/

T
1 I[

and,

* N,J,_V,_.
O)

The SIT approach is applicable to any individual
chamber size and any number of chambers per engine.
Possible SIT engine configurations with 3, 4, 6 and 8
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Fig. 4 Segmented ion engine configurations.

C-6



chambers are shown in Fig. 4. Projected SIT engine
performance values are given in Table 1 for individual
segment sizes of 30, 50, 75 and 100 cm diameter. The

first two columns in this table refer to SIT configurations
with six segments per engine, in the last two columns
eight segments per engine are used. The fhst column in

this table refers to relatively conservative engine
performance which could be achieved using six state-of-

the-art 30-cm diameter chambers. This SIT configuration
has a total grid area equivalent to a 70-cm diameter

circular engine. The maximum total engine input power
for this configuration is projected to be 101 kW with an
overall efficiency of 69% at a specific impulse of 10,000
seconds. Each of the six segments must process one sixth
of this power, or 16.7 kW each. For each segment this is
accomplished by operating with a beam current of 4.73 A

at a beam voltage of 3360 V. Assuming a discharge
voltage of 45.0 V and a discharge loss of 175 eV/ion, the
discharge current per chamber is only 18.2 A. These
parameters are well within the current state-of-the-art for

30-cm diameter ion sources. The J-Series thruster has
been operated at beam currents up to 5.9 A with argon
propellant, 2a and at input power levels of up to 17 kW
with xenon. 17 The total thruster beam current is 6 times

4.73 A, which is 28.4 A, and greater than 95 kW (28.4 A
x 3360 V) of the input power is contained in the exhaust.

Thus, with this approach a 100 kW argon ion engine
could be built today using existing technology.
Furthermore, building and testing such an engine now will

provide the necessary experience for the development of
larger, higher power segmented ion engines in the future.

Projected performance data for the 6 x 30-era

segmented engine are given in Table 2 over the range of
specific impulses from 7000 to 10,000 s, and the input
power versus I_, from this table is plotted in Fig. 5.

The second column in Table 1 indicates the projected
performance which could be achieved through the use of
a 6 x 50-cm segmented ion engine. Specifically, this
engine, which would consist of six 50-era diameter ion

sources of the type currendy under development, 17can
process over a quarter of a megawatt at a specific impulse
of 10,000 s. Operation of 50-cm diameter chambers with
argon propellant at a specific impulse of 10,000 s will
require the development of an accelerator system with a
span-to-gap ratio of only 338, which is significantly less
than the state-of-the-art for 30-cm thrusters, and less
technologically demanding than the accelerator systems
currently under development for the 50-era chamber. _

Furthermore, the use of relatively high applied voltages
means that the accelerator system electrodes can be more

robust (i.e., thicker) than those designed for closer grid
spacings and lower voltages. With this approach near

term development of a 0.25 MW argon ion engine appears
to be possible.

110 j , , ,

6 x 30-cm SIT IARGON

100

IZ
tJ

o_ Qo
el

I,-

el

8O

70 i i i I

600_ 7000 8000 9000 10000 t 1000

SPECIFIC IMPULSE {t)

Fig. 5 Variation of input power as a function of
specific impulse for the 6 x 30-cm SIT.

The third column in Table 1 gives the performance of
an 8 x 75--cm segmented thruster. For operation with
argon at a specific impulse of 10,000 s and a maximum

electric field of 2600 V/ram, assigning the span-to-gap
ratio equal to the present state-of-the-an (i.e. 500) results
in a chamber diameter of approximately 75 era. The use
of eight 75-era chambers results in an ion engine which

can process over 800 kW and produce a thrust of greater
than I0 N. Each 75-cm chamber requires a discharge
current of 130 A assuming a discharge voltage of 40 V.
A 12.7-ram diameter hollow cathode has been operated on
argon at emission currents of up to 150 A for as long as
24 hours and at 100 A for 1,000 hours? s

The development of such an engine will require scaling
the existing 50-cm diameter ion chamber up to 75-cm. In
particular, the development of a 75-cm diameter, high
voltage accelerator system with a span-to-gap ratio of 500
will be required, and long duration tests of hollow
cathodes operating with emission currents greater than
100-A will be necessary. The significance of the
segmented design approach is that an 800-kW argon ion
engine (with a specific impulse of 10,000 s) could be
build without requiring the development of an ion
accelerator system which has a span-to-gap ratio that is
greater than the current state-of-the-art. (Note, the
effective span-to-gap-ratio of this engine design is 1400,
based on an effective engine diameter of 2.12 m.)

Furthermore, hollow cathodes have already been tested at
emission currents necessary to support development of
such an engine. Thus, the development of 800-kW class
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Number of Segments

Table 1

Segment Diameter (cm)

Specific Impulse (s)

Maximum Power into Engine (kW)

Engine Efficiency

Thrust (N)

Projected Performance of Segmented Ion Thrusters

6 x 30-cm SIT

6

30

10,000

100

0.69

1A2

6 x 50-cm SIT

6

50

Propellant Flow Rate (g/s) 0.014

Propellant Efficiency 0.80 0.80

Total Grid Area (m2) 0.383 1.11

Equivalent Diameter (m) 0.70 1.19

50Engine Mass (kg)

10,000

289

0.70

4.10

0.042

120

Each Segment

- Input Power (kW) 16.7 48.2

- Beam Current (A) 4.7 13.6

- Discharge Current (A) 18.2 59.3

- Discharge Voltage (30 45.0

- Grid Gap _ = 2600 V/ram) (mm) 1.4

- Beam Voltage (V) 3360

373O- Total Voltage Or)

40.0

IA

3360

3730

8 x 75-cm SIT

75

10,000

844

8 x 100-cm SIT

8

100

10,000

1640

0.70 0.70

12.0 23.2

0.12 0.24

0.80 0.80

3.53 6.28

2.12

300

106

29.7

130

40.0

1.5

3360

3730

2.83

440

205

57.6

252

40.0

1.4

3360

3730

700

2.2

0.56

- Span-to-Gap Ratio 200

- Screen Hole Diameter (mm) 2.2

- Screen Grid Thickness (mm) 0.56

- Discharge Propellant Efficiency 0.85

338 500

2.2 2.2

0.56 0.63

0.85 0.85 0.85

argon ion engines appears to be a readily achievable goal.
The power density of this engine is no greater than that

of the 30-cm diameter J-Series ion engine operating at 17
kW, and at this power level the J-Series thruster was

demonstrated to be self-radiating. Consequently, the 8 x
75-cm segmented engine will not require active cooling
even at 800 kW. The engine specific mass is projected to

be less than 0A kg/kW.

The forth column in Table I gives the projected
performance for an 8 x 100-cm segmented ion engine. In
this case the engine consists of eight 100-cm diameter ion
chambers, which together can process a maximum input
power of 1.6 MW and produce a thrust of 23 N at a

specific impulse of 10,000 s. The span-to-gap ratio
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Table 2 Projected Performance versus I.p for 6 x 30-cm Segmented Ion Engine

Isp = 7000 s Isp = 8000 s

(A)

Beam Voltage (V) 1650 2150

Grid Gap" (mm) 0.69 0.90

Total Propellant Flow Rate (g/s) 0.0182

Assumes a maxlmum-elec_c tield' oi 2600 V/mm

Isp = 9000 S Isp = 10000 s

Input Power (kW) 74.9 83.5 92.2 101

Thrust (N) 1A3 1A3 1.43 1.43

Total Engine Efficiency 0.66 0.67 0.68 0.69

Total Beam Current 40.6 35.5 31.6 28.4

2720 3360

1.14 1.40

0.0209 0.0162 0.0146

required for the accelerator system of each 100-cm
diameter chamber is 700 (the effective span-to-gap ratio
based on the equivalent circular engine diameter is over
2000). The discharge current for each chamber is 250 A.
Both the span-to-gap ratio and the discharge current
requirements are beyond the current state-of-the-art, but
not by enormous amounts.

Thus, the development of a 1.6 MW argon ion engine
appears to be a technically reasonable objective, and one
which would require only reasonable extensions to the

state-of-the-art for key engine components using the SIT
design approach. This would require sealing the chamber
diameter by a factor of 2 from the existing 50-cm chamber
and increasing hollow cathode current capability fromthe
100-150 A range to 250 A. From Fig. 3, such an engine
would fit within a square 4-m on a side and have a mass
of approximately 440 kg (for a specific mass of
approximately 0.3 kg/kW). Power density considerations
dictate that the engine would be self-radiating at 1.6 MW.
The overall engine efficiency would be approximately
70%.

Operation of the 8 x 100-cm thruster at specific
impulses less than 10,0(30 s will result in decreased power
handling capability (if the maximum span-to-gap ratio is
maintained at 700) or will require development of l-m
diameter accelerator systems with significandy greater
span-to-gap ratios as shown in Fig. 6 and Tables 3 and 4.

Engine Performance and Life Testing

Development of high power ion engines will require
both performance and life testing. Life testing places
greater demands on the vacuum test facility because of the
necessity to perform long duration tests at very low

1R
"'_ I i I I

I I ... 2600 V/ram

I 8 x l O0-cm SIT[ '_D

,.. 1.6 [ AROON [_///

_ 1.4 _ /

vw= 1.2 ,o-:,s_...-" /

CONSTANT r. - 2|00 Y/mm

*" 1.o r - =s._rt_" =.oov/,.., /
p 21ooV/.,mI,-

:: / T- 15.,4 N
L /
ks/'ZZ 0.8 / CONSTANT SPAN-TO-{:AP

o_ 0.6 / ,ATIO:,..700
2:

rud 0.4, , / 11150 Y/mm, T - |.|2 N

13 r ,, 1270 V/ram, T _ 5.|4 X

0.2 i I ., i i

6000 7000 8000 9000 10000 11000

SPECIFIC IMPULSE (=)

Fig. 6 Performance variation with specific impulse for
the 8 x 100-cm SIT with constant E._ and constant !i,
a._umpaous.

pressures. Vacuum system pressures less than 10s torr
during engine operation are required to minimize
accelerator grid erosion due to facility induced charge-
exchange ions. To life test a 100-kW argon ion engine at
a pressure of 5x10 6 tort requires a pumping speed of
1.2xl& liters/s, life testing a 1.6-MW engine requires
2.0x107 liters/s. Ion engine performance testing, on the
other hand, can generally be done at vacuum system
pressures as high as 3x10 s torr so that pumping speed
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Table 3 Projected Performance for 8 x 100-cm SIT at _ = 2600 V/mm

Input Power (MW)

Thrust (N)

Total Engine Efficiency

Total Beam Current

Total Discharge Current

(A)

(A)

Isp = 7000 s

1.23

23.5

0.66

666

2914

Grid Gap (ram) 0.69

Span-to-Gap Ratio 1450

Accelerator System Electric Field (V/mm) 2600

(g/s)Total Propellant Flow Rate 0.342

Isp= 8000s

1.37

23.5

0.67

583

2550

0.90

1110

26O0

0.300

Isp= 9000 s

1.51

23.5

0.68

518

2270

1.14

879

2600

0.266

Isp = 10000 s

1.66

23.5

0.69

466

2040

1A0

712

2600

0.240

Table 4 Projected Performance for 8 x 100-cm SIT with Constant Span-to-Gap Ratio

Input Power (MW)

Thrust (N)

Total Engine Efficiency

Total Beam Current (A)

Total Discharge Current (A)

Grid Gap (mm)

Isp= 7000 s

0.295

5.64

0.66

160

699

1.40

Isp= 8000s

0.560

9.62

0.67

239

1040

1.40

Isp = 9000 S

0.992

15.4

0.68

340

1490

1.40

--10000s

1.66

23.5

0.69

466

2040

1.40

Span-to-Gap Ratio 700 700 700 700

Accelerator System Electric Field (V/mm) 1270 1660 2110 2600

Total Propellant Flow Rate (g/s) 0.082 0.123 0.175 0.240

L
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requirements for performance testing are generally only
about one sixth that required for life testing.

For the segmented ion thruster, most of the

development work can be performed at the segment level.
Major life limiting design deficiencies can be identified by
life testing individual segments. Life testing at the
segment level reduces the pumping speed requirement by
l/N, relative to life testing the complete engine.
Ultimately the complete engine will have to be
performance tested and segment-to-segment interactions

identified. A life test of the complete engine may not be
necessary depending on the extent of these interactions.

Refiability

The segmented ion thruster design approach is capable
of enabling the near-term development of 100-kW class

ion engines and may enable the development of megawatt
class engines, but at the expense of increased engine and
power processor complexity. It should be noted, however,
that increased complexity does not always result in
reduced reliability. The benefits of the segmented design,
i.e., reduced span-to-gap requirements, reduced cathode
emission current requirements, increased fault tolerance

and reduced vacuum system pumping _ requirements,

must be weighed against the increased complexity.
Presumably there is some number of segments per engine
at which the increased complexity offsets the benefits of
the segmented engine design. It is not obvious whether
this number is as small as two or perhaps greater than ten.

Segmented engine designs with as many as eight segments
are presented in this paper and are believed to be

reasonable. A detailed reliability analysis of a segmented
ion engine versus a conventional engine configuration
would be required to resolve this issue.

Arcing

Ion accelerator system operation at voltage differences
of a few thousand volts between electrodes 1.4 mm apart
with plasmas on both sides of the electrodes will

occasionally produce a high current low voltage arc
discharge between these electrodes. To clear this low

voltage arc and restore normal engine operation, it is
necessary to remove the voltages from the electrodes for
some period of time (typically on the order of one second)

andthen reapply these voltages. This capability for high
voltage "recycling" is built into the design of the high
voltage power supplies for ion engines. Recycling rates
aregenerally a function of the electric field stress between
the electrodes and the current density of ions extracted.

It would also seem likely that the recycle rate is a function
of the total active grid area, all else being equal. Thus,

one may expect that a large area ion engine may recycle
more frequently than a smaller one under identical
operating conditions.

Extended tests of 30-cm diameter xenon ion engines
with electric field stresses of 2300 to 2400 V/ram have
resulted in average recycle rates of between 1.5 and 2.4
recycles/hour. 1_a6 If the recycle rate scales with active

grid area then the 6 x 30-cm SIT thruster may have a
recycle rate of between 9 an 15 recycles/hour. This rate

is high, but not unreasonably so. Scaling the recycle rate
with beam area up to the 8 x 100-cm SIT size results in

a recycle rate of between 135 and 216 recycles/hour. This
is one recycle every 17 to 26 seconds. This is clearly an
unacceptablerecyclingrate, however,therecyclingrates
from Refs.16 and 24, upon which thisconclusionis

based,may be artificiallyhighasaresultofoperationat

relativelyhigh vacuum chamber pressureswhich
significantly increased the erosion rates of the accelerator
grids in these tests. Never-the-less, much additional work

will be required to determine the variation of recycle rates
with grid area.

Conclusions

A segmented ion thruster (SIT) design consisting of
multiple discharge chambers and ion accelerator systems
is presented as a method by which 100-kW class ion

engines could be developed today using components from
existing 30-era diameter ion engines. Furthermore, this
design approach may enable the development of megawatt
class ion engines by reducing the performance
requirements of key engine components, such as the ion
accelerator system and the main discharge hollow cathode.
Benefits of the segmented ion thruster design approach
include: reduction in the required accelerator system span-
to-gap ratio for large area engines, reduction in the
required hollow cathode emission current, mitigation of
the plasma uniformity problem associated with the
development of large area ion engines, increased tolerance
of accelerator system faults, and reduction in the vacuum

system pumping speed required for engine development
testing. The optimum number of segments per engine
must be determined through a trade off between these
benefits and the engine and power processor system
complexities which increase with the number of segments.
Useful, megawatt class ion engines must have high voltage
recycle rates that are comparable to present state-of-the-art
engines. That is, ion accelerator systems must be
developed in which the recycle rate per unit grid area is
significantly less than that demonstrated in recent long

C-ll



duration engine tests.
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ABSTRACT

In order to enhance the exploration of our

solar system the basic cost of such

operations must be reduced. One major

reduction would come from the development of

more propellant efficient primary and

secondary space propulsion systems. Electric

propulsion devices promise to accomplish

this reduction in basic operating cost by

greatly reducing the mass of propellant

required in space. One such device, the

Applied Field Magnetoplasmadynamic (MPD)

thruster, is being studied and some

preliminary results on diffuser effects in

MPD test facilities, on thermal modeling of

the engine cathode and on thrust

measurements are presented here.

i. INTRODUCTION

The eventual robotic and/or human

exploration of our solar system will require

enhancement and development of a broad

spectrum of technologies, includlng primary

and secondary space propulsion. Indeed, one

of the major impediments to this human

advancement is the basic cost of

transportation in space and this cost is

overwheimingly determined by the shear

weight of the propellant needing to be moved

from place-to-place. Therefore, a very large

advance can be made toward the eventual

success of this mission by the development

of propellant efficient space propulsion

systems.

One very promising approach is the

substitution of electrical energy for

chemical energy in our thruster technology,

whenever this becomes feasible. Feasibility

is guaranteed for any mission that requires

a large nuclear or solar electrical power

source for mission primary objectives.

However, even without this need, the

potential saving in needed propellant mass

is so great that the net mass saving for

some select missions, after the entire power

supply mass is charged to the propulsion

system, is still very attractive.

Of the many different concepts for deriving

thrust from a propellant accelerated by

electrical means, the single concept that

can utilize electrical power levels in the
hundreds to thousands of kilowatts is a

magnetoplasmadynamic (MPD) thruster. Work on

these devices has been ongoing, and at a low

level, since 1965. This work has been

impeded by a lack of understanding, of the

physical processes occurring, both in the

plasma and in the engine components, when

the temperatures, electric currents and

electric/ magnetic fields become very high,

as they must if this device is to become

efficient and practical.

This paper reports on the preliminary

results of some ongoing research on one
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particular type of MPD, called an Applied

Field Magnetoplasmadynamic thruster. The

applied field refers to an applied radial

and axial magnetic field. Specifically, the
results of measurements of the effectiveness

of a diffuser to lower the engine test

environmental pressure are presented. This

work addresses one aspect of the problem of

providing adequate and affordable test

facilities for MPD developmental testing. In

addition, some preliminary results from our
attempt to model the heat flow and

temperature distributions in the MPD cathode

are presented and discussed. This is part of
our effort to understand the flow of heat

and resultant temperatures in all engine

components under very sever conditions.

Finally, a few experimental resuitsfrom our

unique duel beam thrust stand, are

presented. This stand was designed and built

to separately measure the thrust developed

by the archead and by the applied field

electromagnet, simultaneously.

2. DIFFUSER EFFECTS

It is a well known fact that vacuum tank

ambient pressure can have an adverse effect

on several of the thrust producing

mechanism, as well as on the measurement of

thrust, in all forms of electric propulsion

devices. For example, in thermal devices

such as arcjets, a high background pressure

will interfere with the nozzle expansion

processes, will contribute to cooling

through natural and forced convection and

can interfere with thrust stand operation

because of possible impingements of fluid
currents on sensitive thrust stand elements.

These same interfering mechanism can be

applicable to applied field MPD testing as

well; and in addition, background gas

entrainment and acceleration in the engine

plume and effects on plasma conductivity
Would be additional considerations. Because

of these potentiaiiy adverse effects,

testing with adequ_e_ac_grou_ pressure

levels in electric propulsion test

facilities is critical to the ultimate

development of electric propulsion engines.

A literature survey of_background pressure
effects on self and applied field MPD

performance can be found in Reference I. For

self field MPD's they found no indications

of adverse effects when vacuum tank

pressures were below one mtorr. For applied

field MPD's it was found that high

background pressure Could either degrade

performance by interfering with one or more

thrust producing mechanism or enhance

performance by entrainment and acceleration.

These effects depend on type and flow rate

of propellant gas used, background gas type

and pressure. For example, with hydrogen

flowing at 3.5 mg/s and nitrogen as

background gas the vacuum tank pressure had

to be kept below about 8 mtorr to avoid

adverse effects on performance measurements.



Forammoniapropellant at variousflow rates
andwith a variety of backgroundgasesa
pressurebelow0.3 mtorr wasrequired.
If these required steadystate vacuumtank
pressuresareto bemaintainedbycontinuous
pumpingonly, the facility costs, and for
long term life testing (a practical
necessity for all electric propulsion
devices) the operating costs, can become
prohibitive. For example,the installation
cost of a moderndiffusion pump is
approximately $12 x 106 per gm/sec of

hydrogen and $15 x l0 s per gm/sec of

ammonia vapor. Cryopumping of hydrogen or

dissociated ammonia would be even more

prohibitive for full scale engine life

testing. The only known method of reducing
the required pump capacity would be to take

advantage of the directed kinetic energy in

the test engine plume. This can be done by

considering the engine as part of an ejector

pumping system and/or directing the high

energy plume into a diffuser designed to

decelerate the exhaust gases while

maintaining as much of the original

stagnation pressure as is possible.

A review of the literature seemed to

indicate that ejector/diffuser design

methods and/or data for ambient pressures

below one tort do not exist. Extrapolations
from the existing, high pressure, data were

used as a starting point and several

preliminary designs have been fabricated and

tested with high power arcjets and moderate

power applied-fieldMPD engines. Examples of

some relevant results of these tests are
shown in Figures 1 and 2.
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Figure I. Arcjet Diffuser Data.
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Data obtained from a 30 kW class arcjet
engine is shown in Figure 1. This data was

obtained in the facility shown in Figure 3,

using the engine design shown in Figure 4.

The vacuum tank pressure was measured with

a Baratron pressure gauge calibrated in the

range of one to one thousand mtorr. The

initial test was made without the diffuser

but with the engine plume directed at the

inlet to the water cooled elbow shown in

Figure 3. The propellant was ammonia so that

with zero arc power the diffuser passed pure

ammonia vapor and with arc power the gas was

a mixture of nitrogen and hydrogen with

possibly some residual ammonia vapor if
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dissociation was incomplete. Therefore, for

arc power greater than zero the tank

pressure increases, partly because of a

decrease in mean molecular weight (increase

in the volume rate of flow due to

dissociation), and partly due to an increase

in gas temperature. Note that since the

engine is facing into the open elbow, some

recovery of stagnation conditions must be

ARCJET

16.1cm ID.60 cmLONG

\
WATER COOLED _ & •

DIFFUSER 14.9cm 1

TO HEAT EXCHANGER+

AND 6324LITER/SEC
PUMPINGPLANT "_

Figure 3. Arcjet Test Facility and Diffuser
Installation.

occurring, resulting in a lowering of the
tank pressure.

Next, a water cooled constant diameter

diffuser with a 14.9 cm ID and a length of

53.7 cm was installed as shown in Figure 3.
The mouth of this diffuser was 6.4 cm from

the engine exit plane. With this diffuser,

a vacuum tank pressure decrease of 50 mtorr,

independent of arc power, was experienced.

Again, the vacuum tank pressure increase

with arc power is attributed to increased

dissociation and gas temperature. With this

diffuser, a secondary effect may also be

that the arcjet plume could balloon out and

not be completely captured by the diffuser

mouth. To alleviate this potential problem

a second diffuser, slightly bigger in"
diameter and length was fabricated,

installed and tested. This new diffuser had

an internal diameter of 16.1 cm, a length of
60 cm and its mouth was coincident with the

arcjet exit plane. The results of this test

are also shown in Figure i. For this test,
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the zero arc power data point is higher than

the corresponding point for the no diffuser

case. This increase in vacuum tank pressure

represents the loss of pumping speed

(decrease in system conductance) due to the

diffuser impedance. However, once the arc is

turned on, and regardless of the

dissociation and elevated gas temperature,

the measured vacuum tank pressure is

dramatically reduced from the no-diffuser

test and the amount of reduction increases

with arc power (increased exhaust velocity).

Hence, for this final arcjet diffuser

design, the ejector/diffuser effect

overcomes dissociation, elevated

temperatures and plume ballooning effects

and its use results in a very large

reduction in vacuum tank back pressure. This

means that the investment in pumping plant

installation and operating cost could be

reduced by more than a factor of two in any

proposed new arcjet test facility.

Because of these encouraging results with

arcjets a similar, constant diameter,

ejector/diffuser was attempted with our

applied-magnetic-field MPD engine test

facilities. The design chosen is shown

schematically in Figure 5. Since we were

trying to achieve a lower vacuum tank

pressure in our MPD facility, resulting in

more ballooning of the plume, and since we

were attempting to use a magnetic nozzle,

again resulting in a further expansion of

the engine plume we choose a much larger

diameter to try first. The design, shown in

Figure 5, was a water cooled 46 cm diameter

by 123 cm long cylindrical section followed

by a 41 cm long cone as a transition to a 25

cm diameter vacuum line. A 6324 liter/sec

mechanical pumping plant was used to pump on

the diffuser outlet and a 1227 llter/sec

mechanical pumping plant was used to

continue pumping on the vacuum tank,

directly. The mouth of the diffuser was

located 3 cm from the engine exit plane in

order to provide visual access to the plume.

The data obtained with this ejector/

diffuser is shown in Figure 2. Argon, at a

constant mass flow rate of 0.09 g/s, was

used as the propellant, the arc power was
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varied between 5 and 35 kW and the magnetic

field strength, measured at the cathode tip,

was varied between 0 and iii0 gauss. The

initial tests were conducted without the

diffuser installed. The vacuum line was

removed from the vacuum tank and both

pumping plants were used to pump on the tank

itself. Vacuum tank pressure measurements,

obtained with a calibrated Baratron gauge,

were made as a function of arc power and

magnetic field strength and are shown as

filled data points in Figure 2. Notice that

the pressure is independent of magnetic

field strength and rises only slightly with

arc power. Since these test were performed

in a large tank the exhaust gas temperature

most likely was equilibrated with the tank

walls before it arrived at the two pump out

ports. The slight rise in vacuum tank

pressure with arc power could then have been

caused by a slight rise in temperature at

the pump out ports.

Next the ejector/diffuser was installed as

shown in Figure 5, and essentially the same

test parameters were repeated. This data is

shown as open data points in Figure 2.

Notice that without the magnetic field and

at low power the vacuum tank pressure was

reduced by the diffuser but as the arc power

was increased the tank pressure also

increased as it did for the arcjet tests of

Figure 1. This result may have been caused

by ballooning of the plume and elevated gas
temperatures which canceled out most of the

diffuser/ejector effect. Note that with the

addition of the diffuser and vacuum line the

conductance of that part of the pumping

system was much increased, but the

ejector/diffuser effect was still great

enough to overcome these and still produce

a moderate reduction in tank pressure.

When the magnetic field was turned on a

dramatic new result appeared. The vacuum

tank pressure was reduced further and

continued to drop with increasing arc power

and magnetic field strength. These results
seem to indicate that as the exhaust

velocity is increased by either increasing

the arc power or applied magnetic field

strength, or both, the ejector/diffuser

effect increases, as is manifested by a

reduced vacuum tank pressure. This effect
continued at lower mass flow rates and

higher arc power and magnetic field

strength. The extreme, to date, was a

measured vacuum tank pressure of 6 mtorr

with 0.07 g/s of argon, 40 kW of arc power

and a magnetic field strength of 1360 gauss.

All indications seem to suggest that at

still higher arc power and/or magnetic field

strength the diffuser will lower the vacuum

tank pressure further. At a pressure of one

mtorr, or less, it will become possible to

turn on our three diffusion pumps, thus

adding 260 x 103 liters/sec to our pumping

capacity. Hence, with a sufficiently high

plume velocity, the ejector/diffuser effect

can overcome the added impedance of the
diffuser and vacuum line and overcome the

elevated gas temperature at the entrance to

the pump out system, and effectively reduce

the vacuum tank pressure to a regime low

enough to make meaningful engine voltage and
thrust measurements.

3. C_THODE THERMAL MODEL

Radiation cooled MPD thrusters are

nreferable to liauid cooled thrusters for
D-5

space applications because of their simpler

design and higher efficiency. _ However, in

radiation cooled thrusters the operating

power can be severely limited by the

thruster thermal design. Recent experiments

at JPL have shown severe cathode tip melting

even at moderate powers (less than 50 kW).

A therm_l analysis of the cathode tip region

was completed to investigate this problem.

A one-dimensional heat transfer analysis was

performed on the cathode tip to achieve a

first-order approximation. Two tip

geometries were considered, namely a

flattened conical tip and a flattened

hemispherical tip. The tip area is the same

for both shapes and the dimensions are shown

in Figure 6. The axial temperature drop

© ®

R

ConicalTip Configuration

© ®

R--P-

-T
R

HemisphericalTip Configuration

Figure 6. Cathode tip geometry.

across the tip can be obtained by

integrating equation 1 along the axial

direction with the appropriate cross-

sectional area for the shape of interest.

Since the cathode base temperature is

usually fixed by the cooling capability of

the thruster, the calculated cathode

temperature drop can be used to estimate the

tip temperature. It can then be determined

whether or not the tip is likely to melt.

(i)

where q is the heat load (W), k, is the

thermal conductivity (constant), and A_ is

the cross-sectional area. J The temperature

drop for the conical and spherical tip

geometries are given by equations 2 and 3
respectively. Values for the MPD thruster



Table I. MPDGeometryPameters

r = 0.25 cm

R = 0.95 cm

0=3(7

k,= 1.0 W/cm K

I._,¢..,= 1.21 cm
11

= 0.916 cm II

cathode geometry are given in Table I and

the results are given in Table II.

= k c tan(8)

2= _ k, LR (R_-r')_:_) (3)

3291J

-2343

_253

- 3101

constant thermal conductivity /

,/

A two-dimensional analysis was also

performed using a commercially available

finite element analysis package. A base

with a length equal to one radius was added

to each tip shape to make the heat flux out

of the base more uniform. A 1 kW heat load

was applied uniformly across each tip, The

resulting temperature contours for the

constant thermal conductivity case are shown

in Figures 7 and 8 for the conical and

hemispherical tips respectively.

The large temperature gradients within the

cathode require the use of temperature

dependent properties for accurate results.

The thermal conductivity as a function of

temperature is shown in Figure 9. 3 The

contours for the temperature dependent

thermal conductivity case are shown in

Figures l0 and ii, A comparison of the

temperature drops for the various cases is

q'" = 1.0 W/cm K (Ts. 1500}

I

!

I
I

, !

I

Figure 7. Conical tip temperature contours with

constant thermal conductivity
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presented in Table II. Although different

base temperatures were used for the two

different shapes, the temperature drops are

comparable. The lower base temperature was

selected for the hemispherical tip so that

all of the temperatures would be lower and

the nonlinear conductivity effect would be

larger and therefore providing a "worst

case". With the same base temperature, the

hemispherical tip temperature drops would be

slightly smaller.

Comparing the temperature drops between the

2-D and I-D analyses, it is apparent that

the I-D approximation is relatively good.

Two temperature drops are given for the 2-D

analysis, namely, along the centerline

(center) and along the outer surface. The

temperature drop predicted from the I-D

analysis falls between the inside and the

nonlinear thermal conductivity
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Table 2.

CASE I

I-D

2-D Center

Constant k Outside

2-D Center

Variable _ Outside

Tip Geometry Temperature Drops

I ConicalTip AT I HemisphericalTip AT

1625 674

1762 897

1194 451

1952 939

1295 468

I ATcord AThemi

2.41

1.96

2.65

2.08

2.77

outside values for both 2-D cases.

Therefore, for predicting gross temperature

drops within the cathode the I-D analysis is

acceptable. However, The large radial

temperature gradients at the cathode tip can

not be predicted with the I-D model. The

temperature at the centerline of the tip is

significantly higher than the outside tip

temperature. The I-D model will only

predict a rough average tip temperature, and

can not predict the radial components since
this is a 2-D effect. As can be seen in

Figures 7, 8, i0 and ii, the temperature on

the centerline at the tip can be

significantly larger than the outside

temperature. This may explain the crater

formations observed at the tips of arcJet

cathodes after long duration tests. 5 For

equivalent base temperatures, the expected

tip temperature for the hemispherical tip

should be significantly lower than that for

the conical tip; and therefore less

susceptible to melting.

Testing of the MPDthruster even at moderate

powers (up to 50 kW) produced severe cathode

tip melting. Figure 12 shows a photograph

of two conical cathode tips after testing

with clear evidence of surface melting.

Figure 13 shows an illustration of a typical

cathode profile before and after testing.

The post-test cathode tip angle is

approximately 45". This indicates that the

cathode tip was eroded significantly during

operation until it reached a geometry that

was compatible with the operating

FinalProfile_'_

Experimental CathodeTip Variation

Figure 13. Illustration of pre-test and

post-test cathode tip geometries.

conditions. The final configuration is

surprisingly close to the hemispherical

shape. This result, along with the

analysis, provided the basis for selecting

the spherlcal tip shape.

The spherical tip shape has since been

tested up to 60 kW with no evidence of

melting. Also, the starting and operating

characteristics are similar with both tip

shapes.

4. THRUST STAND

An attempt is being made to develop a dual

beam thrust stand capable of measuring,

separately, the thrust component developed

by the archead and by the electromagnet,

simultaneously. These measurements are an

important part of our effort to understand

how the applied magnetic field enhances the

performance of these engines. A schematic of

the thrust stand is shown in Figure 14. Both

the electromagnet and archead are suspended
from a water cooled framework that is an

integral part of the vacuum tank header. The

electromagnet is suspended by two 1.27 cm

diameter stainless steel tubes that also

carry the electromagnet cooling water to and

from the solenoid windings and water cooled

solenoid shield. These two tubes are in a

plane that is perpendicular to the thrust
direction and act as the flexures in the

system. As the electromagnet develops

thrust, through the interaction between its

axial and radial magnetic field components

and the electric currents flowing in the

plasma, these two tubes are bent slightly

and the amount of bending is measured with
a Linear variable Differential Transformer

(LVDT). The LVDT output is calibrated by

applying weights horizontally along the

electromagnet centerline with a pulley

system. This calibration can be
D-8

Figure 12. Experimental cathode tips after

testing



accomplished,remotely, after the vacuum
tank has been evacuated. The archead and its

heavy copper bus bars was suspended from a

single 1.27 cm diameter stainless steel tube

which was also used to carry the propellant

gas to the engine. The measurement of

deflection and appropriate calibrations of

the archead system was essentially the same

as that of the electromagnet. The electric

power to both the electromagnet and archead

was transferred onto the thrust stand

through pots of mercury, as shown in Figure

14.

A prelimlnaryattempt to measure thrust with

this stand, while using ammonia vapor as the

propellant, is shown in Figure 15. The

ammonia mass flow rate was 0.050 g/s and the
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Figure 14. Schematic of MPD Dual Beam Thrust Stand.

magnetic field strength, measured at the

cathode tip, was set at 638 and 1110 gauss.

Due to the unavailability of our large
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vacuumpumpingplant during this test the
vacuumtank backpressurewasmeasuredto
vary between120and130mtorr. Theengine
designusedfor this test is shownin Figure
16; however, the cathode tip was

hemispherical and the throat diameter had

been increased from the original 1.27 cm to

3.18 cm by erosion during previous testing.

A photograph of the cathode tip and eroded

throat is shown in Figure 17. The data

obtained from this preliminary test is shown

in Figure 15 as the archead and solenoid

thrust versus the square of archead current

with magnetic field strength as a parameter.

The reason for the large amount of scatter

is not known at this time and is being

investigated. The results suggest that, for

low arc current and magnetic field strength,

the electromagnet increases the total thrust

by 50 % or less. This is in qualitative

agreement with the ammonia calculations

published in Reference 6. These measurements

will be continued to higher arc current and

magnetic field strength and to lower ammonia

mass flow rates.

Figure 17. Photograph of MPD Cathode Tip
and Eroded Throat.
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Alkali Metal Propellants for MPD Thrusters

J. E. Polktand T.J. Pivirotto t

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

Abstract

Experiments performed in the United States
in the 1960's and early 19T0's and in the
Soviet Union with alkali metal-fuelled MPD

thrusters indicate performance levels substan-
tially better than those achieved with gaseous
propellants. Cathode wear appears to be less
in engines with alkali metal propellants also.
A critical review of the available data indicates
that the data are consistent and reliable. An

analysis of testing and systems-level consider-
ations shows that pumping requirements for
testing are substantially decreased and reduc-

tions in tankage fraction can he expected. In
addition, while care must be exercised in han-

dling the alkali metals, it is not prohibitively
difficult or hazardous. The greatest disad-

vantage seems to be the potential for space-
craft contamination, but there appear to be
viable strategies for minimizing the impact of

propellant deposition on spacecraft surfaces.
Renewed examination of alkali metal-fuelled

MPD thrusters for ambitious SEI missions is

recommended."

Introduction

The Space Exploration Initiative (SEI) is an ambi-
tious vision of the human exploration of the solar sys-

tem that will require significant advances on a num-

ber of technological fronts to realize. One of the key

technologies in this undertaking is primary spacecraft

Copyright _) 1991 American [_stitu*.e o1'Aeronautics and
As*.ronau*.ics,Inc., with permission.

t Member o1'*.heTechnical S_a/l',Member AIAA

propulsion. The availability of high-performance ad-
vanced propulsion systems will to a large extent de-
termine the cost and feasibility of achieving the goals
of the Initiative. Nuclear Electric Propulsion (NEP)
is a Candidate system for the robotic planetary mis-
sions, lunar and Mars cargo missions, and pildted
flights to Mars.

A recent study by Gilland [1] outlined the perfor-
mance levels necessary for an NEP system to compete
with alternatives such as advanced chemical propul-
sion with aerobraking or nuclear thermal propulsion

in typical SEI missions. This study showed that elec-
tric.power levels greater than a megawatt are required
to achieve acceptable trip times for the cargo and pi-
loted missions. The demonstrated capability of the

magnetoplasmadynamic (MPD) thruster to process
large amounts of power makes it an attractive choice
for these misiions. However, the savings in propellant
mass or trip time compared to alternate propulsion
schemes depend On the efficiency and specific impulse
the MPD thruster is capable of delivering. For the lu-

nar cargo mission an efficiency of at least 25% is nec-
essary to be competitive for a power supply specific

mass of 10 kg/kWe, and at. least 40% if the specific

mass was 20 kg/kWe. For the Mars cargo mission,
an efficiency as low as 25% can be tolerated if the

trip time can be extended to 800 days. However, for
the Mars piioted mission, the demand for trip times

on the order of one year drives the required efficiency
to greater than 60%. In all cases the trip time and
the initial mass in low earth orbit are substantially

reduced if the efficiency is increased. The specific im-

pulse was found to have a secondary impact on the
competitiveness of electric propulsion systems. For
the lunar cargo mission, a specific impulse of 2000-
5000 S is sufficient, while for the Mars missiofis:iri ::

z

=
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I,p of 4000 s or more is required. In addition to these of the descriptions of experimental techniques in the
requirements on the performance of the NEP system, available literature. The criticism must, under these
SEI missions place strong demands on thruster life- circumstances, be based on an attempt to identify
time. To reduce the number of engines required to a sources of systematic bias in the measurements as
reasonable number the lifetime must be on the order recorded by the researchers.

of 2000-8000 hours [2]. A discussion of the potential for biases in the per-

The performance and lifetime demonstrated in cur- formance measurements evolves from an examination
rent research programs with gaseous propellants are of the derived performance indices' sensitivity to er-
at best marginal for these demanding SE! missions, rots in the observable quantities. The primary per-
Efficiencies of up to 20% at 3700 s specific impulse formance parameters are defined by the relationships

have been achieved with hydrogen propellant in a T
steady-state applied-field MPD thruster at 83 kW [3] I,p = .---- (l)
and 22% at 950 s with argon in a steady-state self- mgo

: field engine at 580 kW [4]. In multimegawatt quasi- T2
: steady self-fleld thrusters efficiencies as high as 40% 17- (2)

at specific impulses up to 5000 s have been at- 2rhlV

tained [2]. While quasi-steady devices are important Pb,,m
diagnostic tools, the high cathode erosion rates inher- rlt_ = I_ (3)

ent in the cold cathode electron emission process fen- where the specific impulse is a function of the thrust

der them useless for flight applications [5]. The cath- T, the mass flow rate rh and the gravitational acceler-
ode also appears to be the life-limiting component ation at the Earth's surface go; the overall efficiency
in steady-state thrusters. Erosion rates sufficiently r/ is defined as the fraction of the total electric in-

low to allow several hundred hours of operation have put power, given by the product of the arc current
been demonstrated [6,7], but the lifetime of curren t _f and the voltage I/, that appears as useful thrust

! cathode materials is severely limited by evaporative power; and the thermal efficiency rhh is the ratio of

, mass losses [8]. Recent work with barium dispenser the power deposited in the exhaust to the total input
! cathodes [9,10] has shown that lower operating tern- power. The thermal efficiency therefore represents

peratures can be achieved, but sustained operation an upper bound on the achievable overall efficiency.
for more than a few tens of hours has not yet been This definition of total efficiency neglects the power
demonstrated, dissipated in the magnet for applied-field engines, but

The literature from US programs in the 1960's and some effort has been expended in demonstrating that
early 1970's and from the Soviet Union suggests that this portion of the power budget can be reduced to a

substantial gains in performance and lifetime are poe- negligible level [11,12]. These performance indicators
sible with alkali metal propellants. Efficiencies from are most susceptible to errors in the measurement of
50-60% at specific impulses of 5000-6000 s and re- thrust, mass flow rate, and beam power. The overall

duced cathode operating temperatures and erosion efficiency is particularly sensitive to uncertainties in
rates have been reported. Based on this evidence, the thrust because of the quadratic dependence.

alkali metal-fed MPD thrusters appear capable of Statistical fluctuations in the measured quantities

satisfying the demanding requirements of SE! mis- can be estimated from the scatter in the data pro-
sions. The justification for a renewed investigation vided there are a sufficient number of samples. When
of the alkali metal-fuelled MPD thruster must be this scatter is well-defined, the mean behavior can be

based substantially on the validity of these reported predicted or ranges of performance identified. How-

results. However, it is difficult to assess the relia- ever, conclusions based on the data may be compro-

bility of the performance and lifetime measurements raised if there are systematic biases in the measured

conducted 20 years ago in the US laboratories, and quantities, which may not be immediately apparent.
evaluation of the Soviet program is hampered by the Potential sources of systematic errors include tares in

difficulty in obtaining English translations of publi- thrust balances from magnetic forces or cooling wa-

cations and conference proceedings and the brevity ter circulation, thermal driR or hysteresis in thrust
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stand motion, interactions with the test environment The Giannlni Scientific Corporation Experi-
such as plume current pattern disturbances by ms, ments
terialwallsorentrainmentofambient gas inthe ex-
haust, and biases in the mass flow rate determination
or drift in the flow control. The reliability of the data

depends primarily on the success of the experimenter
in avoiding these errors. _-_ _ = _-..... _= =

The evidence for extended :catEode_ w_th Mkali

metal propellants is primarily anecdotal, consisting
of subjective observations on the electrode state af-
ter long tests. However, there are some data on cath-
ode temperature reductions achieved in alkali metal-
fuelled engines and some erosion measurements that
lend support to the subjective claims. The documen-
tation of the experimental method is often insufficient
to fully evaluate these data, however.

The primary purpose of this review is to determine
whether it is worthwhile to resume experimentation
with alkali metal prope|iantsl First, the published re-

sults of testing with alkali metals will be summarized
with a critical assessment of the reliability of the mea-
surements. In addition, the observed performance
and lifetime gains will be examined to determine if
they can bejustifled on physical grounds. Finally, the
impact of these propellants on testing requirements
and other spacecraft systems _'ill be discussed.

Review of Experience with Alkali Metal
Propellants

After Ducati's observation in 1963 [13] of the high

exhaust velocities attainable by electromagnetic ac-
celeration of K plasma, a number of laboratories in
the United States and the Soviet Union started ex-

perimenting with the new class of accelerator. In
the United States alkali metal propellants for applied
field MPD engines were explored under NASA and

Air Force sponsorship at Giannini Scientific Corpo-

ration in Santa Ann, California; Electro-OpticaJ Sys-
tems (EOS), Pasadena, California; Avco Corporation

Space Systems Division, Wilmington, Massachusetts;
and Los Alamos NationalLaboratoryinLos Alamos,

New Mexico. Steady-Stateself-fieldand appliedfield

thrusters with alkali metal propellants appear to have

been studied by a number of organizations in the So-

viet Union [14J.

Lithium and potassium were tested in engines sim-
ilar to that shown in Fig. (1) [15]. The thoriated

WAi"e_-COLe:)
INSLLATCR RAOIATICN SHIB.D

\
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Figure I: Radiation-cooled, applied field accelerator

tested at the Giannini Scientific Corporation with
lithium and sodium

tungsten cathodes all had a diameter of 0.792 cm,

while the radiation-cooled tungsten anode throat di-
ameter was varied from 0.635 cm to 1.117 cm. The

propellant feed system was not described in this ref-
erence. The engines were tested in a chamber 0.4
m in diameter and 1.9 m long. The thrust measure-

ments were not repeatable enough for publication, so
only thermal efficiencies were reported. The thermal

efficiency was calculated from the power deposited in
two cooling Circuits, one of which intercepted most of
the beam power and another that was used to cool
some engine components and absorb the power radi-
ated by the anode. In tests ranging from 3 to 9 kWe
with applied field strengths of 0.10 to 0.35 Teals and
flow rates from 0.5 to 3 mg/s the thermal efficiency
of lithium was between 32% and 40%. For potassium
under similar cond_ti0ns the thermal efficiency varied
from 27% to 37%. The efficiencies were observed to

decreasewith increasing throat diameter and increase
sllghtly w|Th _ncreasing power at fixed m_ flow rates
and magnetic field strengths.

In a test of several hours duration with lithium

propetlant,an anode mass lossrate of 1.3g/hr and

a cathode mass gain of 0.8 g/hr were observed. [n
operation with lithium and potassium, insulator ero-
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sion rates wried from 0.I to 2.4 g/hr, depending on
the cathode temperature.

The Electro-Optica] Systems Program

In a long and ambitious research program at
Electro-Optical Systems on alkali metal-fuelled MPD

thrusters, extending from the early sixties through
1967, a total of 26 configurations were studied. Work
on the first 22 configurations are presented in [11]
and the remaining 4 in [16]. A typical configuration,
taken from [11], is shown in Fig. (2). For this de-

Figure 2: Radiation-cooled, applied field accelerator

tested at Electro-Optical Systems, Inc.

vice the cathode diameter was 1.00 cm, the anode

inner diameter (I.D.) 3.00 cm and the graphite ra-
diator I.D. 5.00 cm. In later configurations one and

two additional electromagnet coils were added, down-
stream of the anode, in order to extend the axial

magnetic field• The materials of construction were,

with a few exceptions, thoriated tungsten for both
electrodes, boron nitride for the insulators and some

configuration changes were the point of lithium in-
jection (either the cathode tip or the anode face or
I.D.), anode I.D. (1.5 to 3.0 cm.) and shape, cathode
tip configuration, and magnet coil I.D., location and
number. These engines were tested at power levels
ranging from 3.3 to 43.4 kWe.

One of the major required technologies was the
lithium propellant transhr and metering system.
In [11] the development of a bellows-type system is
outlined. Several versions of this basic type were
tested. Each consisted of a 7.62 cm O.D. bellows

with a 12.70 cm usable expansion length, housed in
a stainless steel cylindrical container. The bellows

expansion rate was controlled by a screw-type linear
actuator. In the first design pressurized argon was
injected between the bellows and its housing to sup-
port the lithium-filled bellows and minimize sag and
buckling. The linear actuator was then used to force

the lithium out of the bellows and into the hot engine
at a known rate. Vaporization occurred inside the hot
electrode being used for propellant injection. A sec-
ond variation of this scheme was to l_lace the lithium

between the bellows and its housing and to pressurize
the inside of the bellows and force the lithium out at

a known and controllable rate with the linear actu-

ator. A third variation was to use the high pressure
argon to expand or contract the bellows and to use

the linear actuator as a brake to merely control the
rate of expansion or contraction.

A second approach to this problem is presented
in [16], in which the liquid lithium is contained in a
heated stainless steel container and forced out with

pressurized argon. The liquid lithium h forced up

into a vaporizer that is attached to the engine anode.
The heat of vaporization was obtained by conduction
from the hot anode, hence the rate of vaporization

(and propellant mass flow rate) depended on engine
power. To measure mass flow rate a critical orifice

was located at the vaporizer/anode joint and the ar-
gon pressure was used as a mass flow indicator.

Besides the lithium mass flow rate; arc power, mag-
netic field strength and total engine thrust were mea-
sured. The thrust stand used was an oil-cooled three

leg parallelogram with flexures at each end of the legs.

The thrust was resisted and sensed by a load cell. Arc

and magnet power were brought onto the thrust stand

main body parts, and graphite for the main supports through mercury pots and the Cooling water, instru-

and the anode radiator, when used. The principal mentation and heater wires were flexible enough to
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not effect the thrust measurements.

An example of the measured performance of this
engine is shown in Fig. (3), taken from [17]. For
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Figure 3: Comparison of lithium MPD thruster
performance measurements conducted at EOS and
NASA Lewis Research Center.

this data the magnetic field strength in the elec-
trode region was 0.1-0.24 tesla and the flow rate set
at 0.01g/s. Measurements with the same geometry

performed at the NASA Lewis Research Centerare

shown forcomparison. The agreement between the

condition.",

A similar radiation-cooled, applied-field engine was
tested at EOS using sodium and potassium as pro-
pellants [18]. The performance with sodium varied
from about 0% efficiency at 540 s'specific impulse to "

approximately 34% at 2000 s, as shown in Fig. (4).
In tests with potassium the efficiency was nearly con-

0.5

0.4

0.3
co

-_ 0.2-

0.!

&&&

t_A && •

a&

0.0 I , s ,
0 500 1000 1500 . 2000 2500

Si_=cit"l¢Impulse (s)

Figure 4: Performance obtained
applied-field accelerator at EOS.

with a sodium

stant at approximately 30%for specific impulses over
1200 s. Experiments were also conducted with bipro-

two independentmeasurements isquitegood. The pellantenginesin which lithiumwas injectedat the

maximum efficiencywas appr_oximately70% ata spe- anode and hydrogenornitrogenwas introducedinthe

cificimpulse between 5000 and 6000 s. The perfor- cathode region.The primary motivationforstudy-

mance ofthe engineswith propellantinjectioninthe ing thesedesignswas to attempt to forcethe arc to

anode was superiorto the cathode-feddesigns, attachatthecathodetiptopreventinsulatorerosion.

The thermal efficiencywas measured by engine

component calorimetryforeach configurationtested.

Valuesrangingfrom 31% to 76% were obtained.The

variationwas due to both configurationand operat-

ing conditionchanges.

One of the objectsof the prograrawas endurance

testingof the lithium-fuelledarejet[16].A totalof
seven endurance testswere attempted, ranging in

lengthfrom 0.5 to III.5hours. Of the 1II.5hours
achievedinthe most successfulendurance test,II0.2

hours were with lithiumand more than I00 hours of

that were uninterrupted.The testwas terminated

voluntarilyand examination of the engineafterre-

vealedthat the electrodes were in "remarkably good

The thermalefficiencyof an EOS bipropellantac-

celeratorwith lithiumsuppliedto the anode region

and hydrogen throughthe cathode was measured by

heat inputsto the engine coolingcircuitsand the

chamber coolingcircuit.These valueswere confirmed

towithin10% by integratingthe energydensitymea-

sured with an enthalpyprobe in the plume {19].In

addition,centerlinevelocitiesinferredby the time-of-

flightoflightintensityfluctuationsinthe plu_ewere
found to correlatewellwith the exhaustvelocitycal-

culatedfrom thrustmeasurements. The confirmation

of basicperformancemeasurements by auxiliarydi-

agnosticmeasurements in the exhaust lendsconsid-

erableweightto the data.

E-6



In the large program at EOS considerable care was

taken to quantify artd minimize the impact of poten-
tial errors. Tares in the thrust stand due to cool-

ing water flow and interaction of the magnet and en-
gine currents with the tank and current leads were
measured and corrected in the data reduction. Their
analysis [18] indicated that interaction of the Hall
currents in the exhaust with the fixed leads and tank

chamber at a pressure of I0 -T Torr showed no signifi-
cant change from the normal operating pressure [21].
These measurements are also ambiguous, because the

extent of the interaction region could have been larger
at the lower pressures, offsetting the decrease in avail-
able gas. The tests of an EOS lithium engine in the
4.5 m x 20 m chamber at NASA Lewis were con-
ducted at a pressure of 3 x 10-4 Torr. The results

could not significantly affect the thrust measurement, agreed well with those obtained at EOS at pressure
Thermal offsets in the thrust stand were found to be of approximately 10 -2 Tort.

significant, so the null position was measured before The effects of entrainment were also studied by
and after each measurement at a particular operat- bleeding other gases into the chamber while operat-
ing point by turning off the engine. Hysteresis and
drift in the transducer sensitivity were found to be
negligible compared to the thermal drift. The to-
tal uncertainty in the thrust measurements _vas esti-
mated to be 4-1-2 g. Experiments conducted at the

Lewis Research Center were also performed on a pen-
dulum thrust balance [17]. In these tests, however,
the thrust was determined by measuring the change
in thrust stand deflection when the exhaust was di-

verted and expelled normal to the thruster axis by
a "thrust killer." These measurements were within

5% of the values obtained by correcting for current
tares and thermal off'set measured by turning off the
thruster.

The possibility of mass entrainment from the am-

bient tank atmosphere was also explored in this pro-
gram. Magnetic field probe measurements in the ex-
haust of a lithium engine have indicated that the

discharge current path can extend downstream of
the thruster exit plane by as much as a meter or

more [20]. Measurements of velocity at different axial

positions [19,20] suggest that considerable plasma ac-
celeration occurs in this external interaction region,

so neglecting the4ngestion of ambient gases in the
performance calculations can bias the results. The

potential for spurious effects is in general smaller with

condensable propellants than with gaseous propel-
lants because low tank pressures are easier to achieve.

Tests performed with lithium in the 2 m diameter

by 2 m long EOS chamber indicated that the thrust

and voltage were affected at chamber pressure lev-

els greater than 10 -_ Tort, but appeared to be con-

"stant to pressures as low as 5 x 10 -s [11]. However,
Moore admits that these experiments are not conclu-

sive because the low tank pressures could not be sus-

tained for very long. Tests conducted in another EOS

ing the engine on alkali metal propellants. Tests with
a lithium engine operating in an argon atmosphere at

"approximately I Torr showed a significant decrease in
thrust and voltage [11]. Argon gas was also used in an
experiment with a similar engine running on sodium,
and the thrust was found to be constant below about

10-a Torr. Above that pressure the thrust initially
decreased to about one-fourth the value found at low

pressures, then increased to a maximum at about
10-l Torr [18]. Similar results were also obtained

with potassium [22]. In all cases the performance

was found to either remain constant with increasing
pressure or decrease, so tank pressure effects appear
to lead to conservative measurements of engine per-
formance.

Another potential environmental effect is the per-
turbation of the exhaust plume current distribution
by the tank walls. Moore [11] suggests that inter-

actions with the tank wall could influence the per-
formance measurements by limiting the extent of the
current patterns, by electrostatic effects, or by short-

ing out part of the discharge. However, the agreement

between the results obtained at EOS and in the large
vacuum chamber at NASA LeRC suggest that this
interaction has a minimal impact.

The mass flow rate of lithium, sodium and potas-

_L,m was measured by the volumetric displacement
of liquid fed to a vaporizor by a bellows-type piston
for all performance measurements performed at EOS.

The system was calibrated in bench tests by measur-

ing the volumetric displacement rate of water from

the reservoir and confirmed by measuring the total
mass of _tal displaced over a certain period. Un-

certainties in the flow rate were caused primarily by
changes in the density of the liquid metal due to fluc-

tuations in the temperature and changes in the pres-
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suredifferential a_:ro_ the bellows. The stated error
in an instantaneous measurement of the flow rate was
10% or 0.001 g, whichever quantity was larger. The
average flow rate over several minutes or longer could
be determined within 5%. This method was subse-

quently abandoned in favor of a vapor metering ori-
fice for the endurance tests because of uncontrollable

bet backplate between them. This unique arrange-
ment eliminated the need for a troublesome insulator

which was prone to cracking and erosion due to the al-
kali metal propellant. The liquid lithium was pushed
out of a known volume by the expansion of a bellows-
type piston, and into a separately heated vaporizer
with a porous tungsten_T-_gand 'a_coui_e _

fluctuations in the bellows feed rate with time con- termined and controlled by the known expansion rate
slants on the order of hours. It is not clear whether of the bellows: The i-ith_um vapor then flowed out of

these fluctuations simply Constrt_dted to theiafidbm the ho]Ib_ cath0de asa=dlrected jet=al0ng tl_e engine
scatter in the data or could be responsible for sys- ¢enterl_ne_ This arrangement al|owed for very stabie __
tematic biases in the performance measurements, arc operation with the discharge emanating from in-

_ - ....... Side t he--cathode -t UTbe_r_00h d: elec'tromaghet i
Los Alamos National Laboratory Program were used tdapply-a predomlnately axial magnetic:

field tO the p_a in the discharge region. Axial
Work on a lithium-fuelled, applied-field MPD

thruster proceeded at Los Alamos Scientificl_,a_ora-
tory from 1967 to 1973. Almost all of the experimen-
tal work was performed on the configuration shown
in Fig. (5), which was taken from [23]. The main lea-

*kSU_.JTOII---.j /.-Aa0sATIO_ SN,gL.O.S,_ ! .....

co.,.o. B.,= ""
• n

_ Gl[am OAivl[ COOo.sP*G "_0

li_t.|.OWS PISTON ¢O0_.ING
Tulll[S

SO cn

Figure 5: Lithium-fuelled MPD thruster tested at Los

Alamos National Laboratory.

lures of their design are a hollow tungsten cathode
•with a 1.1 cm I.D. and 1.g cm outer diameter (O.D.)

field strengths as high as 0.48 tesla were generated.
Most of the tests Weie performed at power levels be-
low 25 kWe, although operation as high as 75 kWe
was achieved. Later a similar configuration in which
lithium vapor was injected through a circumferential
slit in the anode as well as through the hollow cath-

ode was tested [24]. = ......

The engine was initially tested in a vacuum cham-

ber 0.9 m in diameter and 1.5 m long that was main-
tained at a pressure of 2 x 10-¢ Torr [20]. It was
subsequently tested in a larger tank measuring 6.5 m
long by 2.4 m in diameter that was also maintained

at about 2 x 10-_r Tort [23]. _L : i = :
The earliest measurements of thrust performed in

_tl_e_smalIer t'_t_W&e'basei on the _eflection of a

wire screen Suspended in front of the exhaust. The
-_ow was assumed to be free-moiecul_-and momenL

turn transfer by atom or ion desorption from the wires
at the surface temperature was considered in the dat_a

analysis. Results were published [20,25] for a range

of applied fie!d strengths at only one engine operat-
ing point, 350 A arc current at a flow rate of 33.5

mg/s. Under other conditions no valid resu|ts could
be obtained because of thrust screen oscillations or
current flow in the wires. The thrust was found to be

relatively independent of Lithium mass flow rate and

linearly dependent on the product of arc current and

applied magnetic field strength. This relationship of
thrust with the product IB, was predicted in mod-

els discussed in references [20] and [26]. To obtain

and a cylindrical tan tal_m _odewitha3.T5 cm!__-D- t hese results !two_ assum_ed that themajor pla.sma_-
These two concentric electrodes were separately sup- dynamic process w_aaconversion of rota3ional erii_tgy

ported, with no insulator forming a discharge chain- supplied by J, x B, terms into axiM kinetic en&_
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by expansion in a magnetic nozzle.
The exhaust velocity, or specific impulse caJculated

by Eq. (I), was found to increase linearly with the
same IB, product divided by the lithium mass flow

rate. The specific impulse in these experiments var-
ied from 1500-2500 s. The uncertainty in the thrust

measurement is not given in the references, but good
agreement between the exhaust velocity inferred from
the thrust measurements and Fabry Perot measure-
ments of the centerline velocity was found. The com-

parison is shown in Fig. (6). In addition, ion energies

3O
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Figure 6: Comparison of velocities measured with a

Fabry Perot interferometer and calculated from mea-

sured thrust for the LANL lithium engine.

measured with an energy analyzer mounted in the

end of the tank were only slightly higher, an efl'ect
attributed to additional acceleration in the plume be-

yond the position of the other velocity measurements.
The thrust efficiency (not including magnet electri-

cal power) was found to depend linearly on specific
impulse over the meuured range and increased from
approximately 25% at 1500 s to over 45% at 2500 s.

These values are plotted in Fig. (T).

Cathode erosion was initially encountered in tests

in which the power required to vaporize the propel-

lant was provided by discharge heating of the cath-

-,de. Coupling between the vapor feed rate and the
power was found to cause fluctuations in the

.me that may have contributed to the cathode
_egradation. Subsequent experiments with the hoi-

0.6

• "l'hnm_
0.5 O "thrustBalanm

>,

0.4 m•

_ .2

0.1

0.0
0_) I'..... I I500 I 1500 2000 7300 3000
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Figure 7: Performance measured in the LANL
lithium accelerator.

low cathode and an externally heated vaporizor ap-
parently eliminated these problems. The engine was
capable of operating for long periods of time at pow-
ers up to .,.J kWe with no damage to the electrodes.

These experiments were performed at tank pres-
sures well below the values at which ambient gases
perturb the performance measurements, as deter-
mined in the EOS experiments. However, there was

evidence of currents in the plume interacting with the
wnstream end of the tank under some conditions.

.,_ the highest values of magnetic field strength and
arc current, high voltages appeared on insulating por-
tions of the beam stop at the end of the tank and the

arc terminal voltages were suppressed.

There were no reported problems with the bellows

feed system used in these experiments. The volu-
metric displacement rate as a function of the bellows
position was calibrated using water. In operation,

the bellows-piston drive speed was regulated to main-
tain a constant vaporizer temperature. The flow rate

based on the vaporizer power and the output of a
tachometer on the drive motor were found to agree
within 5%.

The calorimetric measurements of the thermal effi-

ciency were based on the power absorbed in the cool-

ing circuit for the downstream half of the tank. The
thermal efficiency was found to increase from 40-50%

with no applied field to over 70% with applied fields
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rangingfrom 0.05to0.20Tesla.Calculationsofthe

view factorsforthe anode indicatedthatonlyabout
12% ofthe power radiatedby the hot surfacescould

bedepositedinthedownstream halfofthetank,lead-

ing toatmost a 4% overestimateofthethermaleffi-

ciency.Other possibleerrors,suchasplume radiation
losttothe upstream halfof thetank,leadto under-

estimatesofthe beam power.

The thrustof thisen_dnewas subsequentlymea-
sured in the largerfacilityon a parallel-pendulum

type thruststand which utilizedflexuresas pivot

points. Power was suppliedto the stand through
coaxialmercury potsand coolingwater forthe elec-

trodesupportsand electromagnetthrough banks of

U-tubes. The sensitivityof the thruststand could

be calibratedtowithin-4-0.05N: Thrust standtares

were measured and usedtocorrecttheforcemeasure-

ments. The thermaldriR was determinedto within

:I:0.05N by turningofftheengine.These estimated

uncertaintiescorrespondroughlytothescatterinthe

data,so itisnot evidentthatthey representpossible

systematicbiases.The lineardependenceofthruston

IB, and efficiencyon specificimpulsewas confirmed.

The measured efficiencyincreasedfrom about 12% at

1000s toapproximately36% at2000 s.The slopeof
thislineissomewhat lowerthan thatmeasured with

the thrustscreen,but stillsuggestsexcellentperfor-

mance in that I,v range. These valuesare plotted

inFig.(7).However, the anticipateddependence of

thrustefficiencyon arc inputpower was not found.

The exhaust velocitiesdeduced from the measured

thrustand lithiummass flowratewerealsomeasured

directly with an e[ectrostatic energy analyzer near the
plume center line and 6.4 m downstream of the en-

gine. The agreement between these two sets of data
was very good.

An earlier experiment at Los Alamos involved the

testing of a cesium-fed device at power levels be-

no problemsof any kind were encountered.The test

chamber measured only25 cm indiameterby 90 cm

long,so plume interactionswiththewallswerelikely.

The thrustwas determinedusinK a thrustscreen.

The authorscalculatedthatverylittlescreendeflec-
tioncouldbe causedby currentsinducedinthewires

and that neglectof elasticcollisionswould leadto

overestimationof the thrustby no more than 50%.
The measured thrustalsocorrelatedwellwith the

parameter[B,. Although the ambientpressurewas
maintainedatabout 2x 10-s Tort,therewas evidence

ofmass entrainment,possiblyfromliquidcesiumthat

collectednear the electrodes.The beam power was

determinedby calorimetricmeasurements usingthe
entirechamber coolingcircuit,because both elec-

trodeswerecooledwitha separatecircuit.The ther-

mal efficiencynever exceeded 40070,and the largest
valueofthe thrustefficiencyobservedwas 20%.

Thisenginewas operatedformany months without

havingto replacethe electrodes.Occasionally,how-

ever,insulatorshad to be replacedbecauseofcrack-
inK.

AVCO Experiments

Tests at AVCO were performed in the water-cooled
applled-_ld engine shown in Fig. (8) with cesium
propellant and with lithium in a radiation-cooled

thruster with a similar geometry. The tungsten cath-
ode had a diameter of 0.635 cm, the diameter at the

entrance of the flared anode was approximately 1.0
cm and the diameter at the exit was about 6.4 cm.

The mass flow rate of the propellant vapor gener-
ated from liquid in a heated reservoir was metered
by an orifice downstream of the injection tube drilled
in the cathode. The tests were performed in a vac-
uum chamber 1.2 m in diameter and 2 m long at a
pressure on the order of 10-* Tort.

tween 4 and i2 kWe with an applied field of up to The engine thrust was determined by measuring
0.! Tesla [27]. in this engine the liquid ces|um Was the displacement of & thrust stand from which the

deliveredby a positivedisplacementbellowsand pis-

ton assemblythroughthecathodetoa ringof12holes

arrayedon the hemisphericaltipalongradii45° from

the axis.The power requiredto vaporizethe cesium

was suppliedby the discharge;therehas apparently

no externallyheatedvaporizer.This system was cal-

ibratedin the same manner as the feedsystem used

in the lithium tests, and the authors reported that

thruster was suspended. The thrust efficiency for

cesium, plotted as a function of specific impulse in

Fig. (9), varied from about 5% at 1000 s to 14% at
3000 s. These data were obtained at power levels from

5 to 10 kWe, magnetic field strengths between 0.05

and 0.3 Tesla and flow rates of 3.5-6 mg/s. Thermal

efficiencies, determined by the power deposited in the
anode cooling circuit, were between 22 and 38%. The
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Figure 8: Water-cooled applied-field MPD thruster

radiation-cooled engine operating on lithium offered
improved performance under similar operating condi-

tions, with etTiciencies of approximately 10% at 1000

s and 30% at 6000 s, as shown in Fig. (9). These
data are somewhat lower than the values measured
at EOS with a cathode-fed MPD thruster.

The design and operation of the thrust stand is not

well documented in this reference, but it was appar-
ently calibrated for magnetic tares and checked dur-

ing operation for thermal drit'_. The uncertainty as-
sociated with the raeMurement is not recorded. The

calibration of the mare Bow measurement (by inte-

grated weight losa over a run) gives only average val-
ues for the flow rate and is subject to changes in

the propellant temperature and arc operating con-
ditions. Corrections for fluctuatious due to temper-

ature changes were attempted, but some uncertainty
must be assigned to this measurement. No obvious

interaction with the test environment was apparent.
The facility pressure was below the values at which

performance measurements were affected in the EOS

used with cesium at AVCO Space Systems Division.

pressure tests. In addition, the chamber used in th_

AVCO studies was similar in size to that used at EOS

so plume interactions with the walls were probably
not any more problematic.

Soviet Literature

A number of Soviet references mention applied-field
and self-field MPD thrusters-that operate with al-

kali metal propellants, but few experimental details

are given. Reference [28] describes an extensive se-
ries of tests with a lithium-fed engine with the basic

configuration shown in Fig. (10). In this design the
lithium is vaporized and injected through a cathode

composed of a bundle of tungsten rods. The flow
rate has a quoted uncertainty of :!:5%. The focus of
the parametric study was to determine the effect of

geometry on the onset current, at which large am-

plitude terminal voltage oscillations and greatly ac-
celerated erosion occur. A number of cathode and

anode geometries were tested at current levels rang-
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Figure 10: Self-field MPD accelerator tested with

lithium in the Soviet Union. l-tungsten cathode,

2-bushing, 3-tungsten anode, 4-feed and support, 5-
insulator, 6-cathode heater, 7-coolant flow.

Reference [33] briefly discusses the state of devel-

opment of electric propulsion in the USSR and its

potential for space exploration as of approximately

were recorded for specific impulses ranging fromSo_ 1086. In part|cu]_ they discuss a Butt-End Plasma

5000 s. The measured efficiencies were not reported Thruster (BEPT) operating with alkali metals as pro-

in [28]. Unfortunately the design of the thrust stand

and the uncertainty associated with the thrust mea-

surements are detailed in a publication which has not

been translated into English [29].

References [30] and [31] discuss spectroscopic and

Langmuir probe diagnostics in the near-cathode re-

gion and anode failure mechanisms in the lithium self-

field engines, respectively.

In a recent paper [32] Soviet researchers compared

three propulsion schemes for a piloted Mars mission

orbital transfer; direct nuclear thermal, advanced

chemical plus electric propulsion +mad all nuclear-

electric propulsion. Their conclusion was that the

latter scheme would allow a minimum overall flight

time less than one year. Four experimentally veri-

fied electric propulsion technol0gies were presented;

three MPD thrusters utilizing bismuth, lithium and

xenon and one arcjet utilizing ammonia. The exper-

imentally verified performance of the lithium-fuelled

MPD thruster was given as 6000 to 7000 s. /o_ ac 50

co 60% efficiency and a voltage of I00 V at a power
level of l0 MWe.

pellant. Lithium is mentioned ms a prospective pro-

pellant for flights to Mars. Stated performance was
a specific impulse up to 10,000 s, efficiencies of more

than 50% and thrust densities of 0.l to l N/cm 2. The

experimentally verified power range was 2 kWe to l

MWe. The authors report that in a 1000 hour en-

durance test of a potassium engine operated at 2.5

kWe the cathode erosion rate was 6 x 10 -s g/s.

In [34] several electric thruster types are discussed,

including MPD engines utilizing bismuth, lithium

and potassium as their working fluid. In particu-

lar, the lithium-fuelled applied magnetic field MPD

thruster is described. They also found that the thrust

of this device increases with arc current and with ap-

plied magnetic field strength. This engine was oper-

ated for many hours at power levels of a few kW to 40

kW, specific impulses of 2000 to 5000 s and efficiencies

of 35 to 80%. They also mention that a potassium-

fuelled 3 kW MPD thruster with a specific impulse

of 3000 s was tested in space on board Kmmos-728.

A flight experiment involving a I kW MPD thruster

with cesium propellant is discussed in [35].
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Experiments with Cathodes in Lithium Vapor

In a series of experiments conducted at Prince-

ton University with a low-power, steady-state MPD

thruster with a lithium-seeded argon propellant,

Chamberlain determined that the cathode temper-

ature was reduced by approximately 300 K, and the

erosion rate dropped by a factor of 20 compared to

pure tungsten. Similar results were predicted analyt-
ically in [36]. Data and theoreticalcalculationsfor

a multiple rod cathode operating in lithium vapor

demonstrate that the cathode work function varies

between 3.5 eV and 4.5 eV, the value forpure tung-

sten [37,38].

Physical Basis for the Advantages Offered by

Alkali Metal Propellants

The high performance levels and low electrode ero-

sion observed in some of the studies reviewed above

can be justified qualitatively on the basis of physi-
cal and chemical properties of the alkali metals, some

of which are displayed in Table (I). The properties

for hydrogen and argon are included for comparison.

The vapor pressures of the alkali metals are plotted

as a function of temperature in Fig. (11). The pri-
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Figure 11: Vapor pressures of the alkali metals.

mary attraction of alkali metals as propellants for

plasma thrusters is based on the low ionization en-

ergies. The magnitude of the frozen flow loss asso-

ciated with the unrecovered ionization energy in the

exhaust depends on the energy required to ionize a

unit mass of the propellant. This suggests that the
lowest frozen flow losses should be achievable with

the heaviest alkali metals, which have the lowest ion-

ization energies. However, the experimental evidence

indicates that lithium actually delivers performance

superior to that of the heavier alkali metals. Appar-
ently losses due to multiple ionization of the other

metals offset their lower first ionization potentials.

The second ionization potential for lithium is so high
that comparatively little double ionization occurs. In

addition, the first excited state of the lithium ion lies

61.95 eV above the ground state, so very little excita-

tion will occur at the electron temperatures typically

observed in plasma accelerators. This explanation

provides some physical rationale for the high meg-
sured efficiencies.

The cathode, which is typically the llfe-limiting

component in MPD thrusters, erodes through five
mechanisms--evaporation, sputtering by high-energy

particles, chemical attack by ambient gases or cath-
ode additives, ejection of molten material, and loss of

solid particles [8]. Melting, evaporation and the sen-

sitivity to Chemical attack all depend fundamentally
on the cathode surface temperature. Alkali metal

propellants can potentially increase cathode life by

decreasing the operating temperature.

The current density j. of electrons emitted

thermionically from a surface at a temperature 7",

is described by the Richardson equation,

j. = AT_ exp(-e_//_T.), (4)

where e is the charge of an electron,/_ is Boltzmann's

constant, .4 is a constant that is theoretically equal

to 120 A/cm2K, and the work function _ represents

the potential barrier at the surface of the conductor.

The work function is weakly dependent on the tem-

perature but sometimes it is assumed to be constant

and A is modified to contain the temperature depen-

dence. For a surface to supply electrons at a certain

current density, the electrons must have a sufficiently

high thermal energy to escape over the potential bar-

rier ¢L The required operating temperature therefore

depends strongly on the surface work function.

The work function of 8 refractory metal cathode
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Parameter Li Na K Rb Cs H2 Ar
Atomic Number 3 I l 19

Atomic Weight 6.94 22.99 39.10

Melting Point (°C) 180.5 97.8 63.2
Boiling Point (°C) 1317 883 754
Density (kg/m 3) 507 904 797
Specific Heat (J/kg°C) 506 58.3 20.1
Heat of Vaporization (kJ/kg) 21200 4310 2020
Dissociation Energy (eV) 1.117 0.740 0.558
1st Ionization PotentiM (eV) 5.39 5.14 4.34

37 55 1 18
85.47 132.9 2.02 39.95
39.0 28.5 -259.1 -189.2
688 671 -252.9 -185.7
1390 1740 70.0 1390
5.42 3.36 14400 519
886 500 449 163

0.503 0.460 2.26 -
4.18 3.89 13.60 15.76

- 27.632nd Ionization Potential {eV) 75.64 : 47.29 31.63 27.28' 25.10

Table 1: Physical and chemical properties [or the alkali metals, hydrogen and argon.

immersed in an alkali metal vapor can be substan-
tially reduced by the adsorption of alkali metal atoms
on the surface. The potential barrier at a composite
surface arises from a component determined by the

relative electronegativity of the substrate and adsor-
bate and from a component due to the dipole moment
of the polarized adatom-substrate molecules. The
work function variation for a metallic surface with ad-

sorbed metal atoms as a function of surface coverage
was successfully modelled by GyRopoul_s and Levine

(39]. This model was used with the material physical
properties given in [39] to generate the work function
curves shown in Fig. (12), where the abscissa is 0, the
fraction of surface sites occupied by adsorbate atoms.
Unity corresponds to a complete monolayer, at which

point the work function is equal to that of the adsor=
bate material. The curves demonstrate a substantial

reduction in the surface work function from that of

pure tungsten.

The surface coverage that can actuMly be realized

in an alkali metal-fed engine is given by an equilib-

rium between the desorption rate of particles from the
cathode surface and the arrival rate of vapor atoms.

which depend on the surface temperature and the

temperature and pressure of the Alkali metal vapor.
[n reference [40] Gyftopoulos and Levine derive theo-
retical correlations between atom and ion desorption

rates and the coverage 0 and the substrate tempera_

ture using a statistical mechanics formalism with des-

orption energies calculated in [41]. The flux of vapor
atoms to the surface can be expressed in terms of

the pressure and temperature of the vapor phase by
the normal kinetic equation, and when equated to the

3
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Figure 12: Work function for alkali metal-tungsten
composite surfaces.

desorption rate gives the equilibrium surface coverage
a function of surface temperature.

When coupled with the work function relations

_tven in Fig: (12) _and the Richardsonequation this
relationship allows the determination of the emission

current density u a function of surface temperature

and the temperature and pressure of the alkali metal
gas. Examples of these calculations t are shown in

Figures (13)-(15). The emission current density for
pure tungsten is displayed in all three figures as a

b01dline for comparison. The curves for the com-

z For the_ cLlcuJa_iocus the iu:bJorl_Msl.e m'_d substr_Le physic ,J

propertyestimates_v_ in referestces[3g,40,41,50] wereused.
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Figure 13:Electronemissioncurvesfortungstensur- Figure 14:Electronemissioncurvesfortungstensur-
faceswithadsorbed lithiumand sodium atoms, faceswith adsorbedpotassiumand rubidium atoms.

positesurfacesincreaseexponentiallyatlow temper-

aturesin accordancewith the Richardsonequation

with the work functioncharacteristicof a complete
monolayer.At highertemperaturesthe currentden-

sitydropsasthework functionincreasesdue toa low-

eringofthe equilibriumsurfacecoverage.The curves

ultimatelyasymptote to the valueforpure tungsten
as the surfacecoveragedrops to zero.These exam-

plesdemonstratethatsubstantialreductionsincath-

ode temperaturefora given currentdensityshould
be achievable.

The alkalimetal gas temperatureand pressurefor
these examples were linkedusingthe vapor pressure

relationshipsshown in Fig.(11).This inessenceas-

sumes thatthe propellantpressureisdeterminedby

thetemperatureofthereservoirorvaporizer.Inprac-

tice,the pressureand temperatureof the vapor near

the cathode attachment pointwilldeviatefrom this

relationshipbecauseofheatinginthe discharge.Fig-

ure (16)shows the optimum gas pressureand tem-

peraturerequiredto achievethe maximum current

densityfora givensurfacetemperature.These curves

representthe lociofmaxima in the curvesdisplayed
in Figures(13)-(15)and isfreeof an assumed rela-

tionshipbetween vapor pressure and temperature.

Thoriated tungsten is used as the cathode material

inmost MPD thrusterexperiments. As the thoria

isreduced to thorium metal a thorium surfacelayer

can form at moderate temperatures.This layeracts

in the same way to reducethe work function;how-
ever.the desorptionratefrom the surfacemust be

balancedby diffusionofthorium from the interiorof

the cathode. Itcan be shown thatat the operating
temperatures required to achieve current densities of

interest for MPD thrusters the desorption rate of tho-
rium from the surface exceeds the diffusion rates in
the solid. This imbalance prevents the establishment

of a thorium layer on the surface. The advantage of
using the low work function material as a propellant
is that much higher resupply rates can be achieved in

the gas phase for sufficiently high pressures and low
gas temperatures.

Testing and Systems-Level Considerations

Alkali metal fuels must be evaluated not only in
the context of engine performance and lifetime, but

also in terms of their impact on ground-ba_d test-
ing requirements and on other spacecraft systems. In
this section some of the most important implications

of alkali metal-fed MPD thrusters for testing and sys-
tem design will be discussed.

Test Facility Pumping Requirements

One of the largest demonstrated a_lvantages of

alkali metals a.s propellants is that they ate eas-
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Figure 15: Electron emission curves for tungsten sur-
faces with adsorbed cesium atoms.

ily pumped. The condensation coefficient for alkali
metal atoms and ions on metal surfaces is essentially

unity [40,42] so the incident particles condense and
equilibrate with the surface. The re-emission rate is
then determined by the surface temperature. The
vapor pressure curves in Fig. (11) demonstrate that
extremely low pressures of alkali metal vapors can
be maintained with water-cooled condensation tar-

gets. However, barnes may be required tO suppt-ess
sputtering of deposited material exposed to the high

energy exhaust, since sputtering is a nonequilibrium
process that is largely independent of the surface tern-

perature. The pumping requirements are then deter-
mined by the leak or outgassing rate of noncondens-

able gases. Alkali metals have the additional bene-
fit of being efficient getters for residual gases when

deposited on vacilum chamber surfaces [16,20], fur-
ther reducing the required pumping speed. With

these propellants, extremely low tank pressures can
be achieved with very modest pumping plants.

Because the condensation coefficient of the alkali

metals is near unity, the walls of the vacuum cham-

ber can be considered perfectly absorbing. Under

these conditions, meaningful plume studies can be

performed in relatively small facilities. Chamber siz-

ing then depends on avoiding interactions between
the wall and the current patterns in the plume.

Alkali metal deposition on optical ports in the
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Figure 16: Gas pressure and temperature required for
maximum current density.

chamber can make optical measurements difficult.
and thin films on insulators may destroy their insu-
lating value• Special care may be required to pre-
vent condensation on these surfaces or actively re-

move films during operation.

Alkali Metal Handling and Safety

The reactivity of the alkali metals is very high, in-
creasing with electropositive nature from lithium to

cesium [43,44,45].The tendency to react with most

materials mandates care in handling these propel-
lants. The primary safety hazard is associated with
the reaction between the alkali metals and water or

water vapor• The alkali metaLs in contact with water

produceheat and hydrogen gas, creating the poten-
tial for fires. The corrosion resistance of some ce-

ramic materials to the liquid alkali metals, particu-

larly lithium, is low, so discharge chamber insulator
material choice and placement are critical for engine

lifetime. Corrosion of metals is a strong function
of temperature, and impurities in the alkali metal
can tremendously accet_e Corrosion pr0cesses_ it

is therefore important to use clean flow systems and

pure metals. A typical problem encountered with ira-
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puremetals in vaporizer systems is the clogging of the
porous tungstenplugwithcorrosionproductstrans-

portedfrom upstream. However, analysis,purifica-
tion,and system cleaningtechniquesarewelldevel-

oped [43144,46].Alkalimetalsystemsshouldnot pose

any new launch hazards, because the safety issues are
similar to those for liquid hydrogen.

Propellant StoreabilJtyand Management

Because the alkali metals can easily be stored as
solids, low tankage fractions are expected, and the
higher densities allow lower tank volumes compared
to liquid hydrogen. The technology for liquid metal
flow systems is well developed [45,46,47], and the
space nuclear power program will produce valuable

experience for space systems. The high heat capacity
and heat of vaporization of lithium make it a good
candidate for regenerative or active cooling of the en-
gine. Engine thermal management may then be in-
tegrated with the power supply radiator, if pumped
lithium loops are used. The large tank ofsolid propel-
lant may also be useful as a heat sink for the system.

Spacecraft Contamination

The high desorption energies which underly some

of the biggest advantages of alkali metals also make
them particularly dangerous potential spacecraft con-
taminants. Spacecraft surfaces that are particularly
vulnerable to contamination by condensable materi-

als were summarized in a review by Byers [48] and
include solar arrays, thermal control surfaces, optical

sensors, communications equipment, structures and
scientific instruments. Condensation of propellant on

spacecraft can adversely affect component function

by altering the optical properties of the material (in-
cluding alteration of the radiation or absorption ca-

pabilities of thermal control surfaces), changing the
surface conductivity, eroding the surface or degrad-
ing the material by chemical or diffusion processes

[48.49].

The proper approach to analyzing the contamina-
tion potential of a propellant is to model or men-

sure the particle fluxes in the exhaust to calculate

the arrival rates at the various spacecraft surfaces.

employ a relationship for the surface kinetics of the

contaminant-component interaction to predict the

surface coverage, and finally determine the impact
of that interaction on the function of the compo-
nents. It is presently infeasible to undertake a so-
phisticated assessment of the contamination hazard
for alkali metal-fed MPD thrusters, however. There
is very little experimental data on the mass flux in
the plumes of alkali metal MPD engines, and no mod-
els which could reliably provide the required fluxes.
In addition, the surface kinetics of the alkali met-

sis on a number of materials used in spacecraft are
not sufficiently well understood to model the ad-
sorption process, although the model of Levine and

Gyftopoulous [39,40,41,50] may be useful for interac-
tions with metal surfaces. Finally, the effect of al-
kali metal films (with the exception perhaps of ce-
sium [51,52]) on the optical, thermal, electrical and
chemical properties of the substrates of interest is not
known in the detail required to assess the damage.

A simple analysis can be used to obtain an esti-
mate of the contamination potential, however. The
condensation rate m, of a contaminant on a space-

craft surface which is already covered by at least one
monolayer of a metallic adsorbate is given by the re-
lationship

mc - m,a - m, (5)

where rn, is the flux of contaminant to the surface.
o is the condensation coefficient of the incident flux

on the bulk condensate and mr is the evaporation

rate from the bulk deposit. The growth of the first
monola.ver is governed by a similar balance equation

which includes terms describing the adsorption and
desorption on surface sites free of the bulk conden-

sate. Adequate treatment of this problem requires
an understanding of the surface diffusion and nu-

cleation processes and the desorption energies from
the bare surface, which in general are not available.

floweret, by assuming that the condensation coef-
ficient o is unity and that the evaporation can be
described by the vapor pressure and the surface tem-

perature, the maximum allowable flux of alkali metal

vapor for which no further growth of the contaminant
layer occurs can be calculated. The maximum allow-
able fluxes for the five alkali metals are presented in

Fig (17) as a function of the surface temperature.

This plot demonstrates that the contamination po-

tential decreases with increasing atomic mass.
The only available data on the mass flux in the

plume of an alkali metal-fed MPD thruster are for
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Figure 17: Maximum particle flux at which no bulk
condensation occurs.

the applied-fieldenginedevelopedatLos Alamos [20].
They found that at an arc current of 400 A, an ap-
plied field strength of 0.125 Tesla and a mass flow

rate of 22.4 mg/s, the flux at an axial position 90
cm downstream of the anode plane was on the order
of 45/_g/cm:s on the centerline and droppe'd to less

than 1 pg/cm2s with increasing radius. Figure (17)

shows that fluxes of lithium on the order of I pg/cm2s
will not lead to bulk condensation if the surface tem-

perature is above about 750 K. Similar fluxes of the
heavier, more volatile alkali metals can be tolerated
on much lower temperature surfaces.

There are a number of strategies for minimizing
the contaminatiol_ potential from condensable pro-

pellaats. The large spacecraft size envisioned for
SEI missions permits considerable flexibility in isolat-

ing critical spacecraft components from the engines.
Power distribution requirements may preclude sub-

stantial separation between the nuclear power source
and associated radiator surfaces and the thrusters,

however. In this case, power conversion schemes such

as the potassium-Rankine cycle which allow waste
heat rejection at elevated temperatures may be fa-
vored to reduce accumulation of pr0pellant material.

Another strategy for confining the propellant is

to shield the spacecraft with a small cooled shadow

shield located near the engines. The re-emission rate
of propellant atoms that have condensed on the cold

shield is governed by the vapor pressure at the shield
surface temperature, so the curves in Fig. (17) can
be used to estimate the flux of material that escapes
the cold target. In this approach high desorption en-
ergies are favored, and lithium becomes the optimum
propellant choice.

Fixed shields for individual surfaces have been

used successfully on a number of spacecraft, and re-
tractable covers for sensitive instruments minimize

interaction problems, butcan be proh_3tNely expen-
sive [53]. Caaeful choice of materials for exposed sur-
faces can minimize chemical incompatibilities with
potential condensates. Biasing specific spacecraft
components to repel low energy charged contami-

nants has also been demonstrated [48,54], and may
be of use on spacecraft with alkali metal-fed engines.

SpacecraR contamination by condensable propel-

iants has been studied in several flight tests. Two ce-
sium ion engines were operated for a total of 92 hours

on the ATS-6 spacecraft launched in 1974. Although
1/8 of the solar array area was directly exposed to the
exhaust plumes, no signs of surface degradation were
observed [48,49]. Evaluation of data from the SErfF
II spacecraR, which logged 5860 hours of mercury ion

engine operation, indicated deposition only on con-
tamination experiment solar cells located at the edge
of the exhaust beam. Other spacecraft surfaces were
unaffected [55]. Soviet experiments with cesium and
potassium-fuelled MPD accelerators on the Kosmos

series of satellites led to the conclusion that dep_i-

tion rates on spacecraft surfaces are "low" [35],al-
though film thicknesses on the order of 100 nm were
apparently formed in 13 minute-long experiments.

Conclusions

The data obtained in the United States in the

1960's and early 1970's and in the Soviet Union

suggest that alkali metal propellants in the proper

thruster geometry offer significant gains in perfor-
mance and cathode lifetime. Lithium appears to give
the best performance, evidently because of low frozen
flow losses associated with second ionization. MPD

thrusters operatingat the measured performance lev-

els could significantly enhance SEI mission capabili-

ties. Although the validity of the results is difficult
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to assess, the data are quite persuasive. The re-
peatability of measurements taken at EOS and the
Lewis Research Center, the agreement between ve-
locities measured in the plume and calculated from [3]

the performance data, the general agreement between
maximum performance levels achieved in the US and
the Soviet Union, and the consistency of thrust ef-
ficiencies and thermal efflciencies argue for accep- [4]
tance of the conclusions. Although there are cer-
tainly errors associated with the measurements in in-
dividual experiments, there are no obvious sources of

gross systematic bias that could invalidate the gen-
eral conclusions. Sound physical arguments provide [5]
further support for the observed performance and im-
proved cathode operation. The evidence seems cred-

ible enough to justify a research program aimed at
repeating these results.

From the point of view of development cost, alkali [6]
metals have a tremendous advantage over gaseous
propellants. One of the largest costs in a full-scale

multimegawatt MPD thruster development program
will be the construction of a facility allowing valid

testing of these devices, and the use of condensable [7]
propellants could enable an otherwise unafl'ordabh

test program. The greatest risk associated with the
use of alkali metals as propellants is the potential
for spacecraft contamination. One focus of an alkali

metal-fed thruster program must be the experimental
and theoretical determination of particle fluxes gen-
erated in the exhaust, the surface kinetics of alkali [8]
metals on materials used in spacecraft, and an eval-

uation of the impact of deposition on the function of
those surfaces.
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